
SOME THEOREMS ON CONTINUA1 

EDWIN W. MILLER 

The following theorem, proved by A. Mullikin in her thesis,2 has 
been used extensively in certain point set theoretic investigations. 

THEOREM. If C is a continuum and Fi and F% are closed, mutually 
exclusive and nonvacuous subsets of C, then there exists a component of 
C—(Fi+F2) which has a limit point in Fi and a limit point1 in F2. 

In §1 we shall obtain a theorem (Theorem 1) which represents a 
strengthening of Mullikin's result. The theorem, in this stronger 
form, has numerous applications. We shall discuss some of these ap­
plications in §2 and §3. 

1. A stronger form of Mullikin's theorem. We prove the following 
theorem : 

THEOREM 1. Under the hypotheses of Mullikin's theorem, there exists 
a constituent4 of C— (Fi+F2) which has a limit point in F\ and a limit 
point in F%. 

PROOF. Let {Gn} and {Hn} denote monotonie decreasing se­
quences of open sets which close down upon .Pi and F2 respectively. 
We may suppose that d and Hi are so chosen that G i # i = 0. Now, 
by Mullikin's theorem, there is a connected subset of C— C- (Gw+27n) 
which has a limit point in Gn and a limit point in Hn. The closure 
of such a connected set is a subcontinuum of C which "extends" 
from Gn to Hn. If, then, we denote by Qn the set of all points of 
C — C' (Gn+Hn) which lie on subcontinua of C which extend (in the 
above indicated sense) from Gn to 13n, we have Qn^O. 

1 Presented to the Society, April 10, 1937, under the title On a theorem due to 
A . Mullikin. 

2 Certain theorems relating to plane connected point sets, Transactions of this Society, 
vol. 24 (1922), pp. 144-162. 

3 In Mullikin's statement of this theorem, C is a bounded plane continuum. It is 
clear, however, that her proof applies if C is any continuum in a compact metric 
space. In the present paper, all point sets under consideration are understood to be 
embedded in a compact metric space, except when the contrary is expressly stated. 
If M is a point set and p is a point of M, then the maximal connected subset of M 
which contains p is called the component of M determined by p. 

4 A set of points K is said to be strongly connected, or to be a semicontinuum, 
if every pair of points of K lies on some continuum contained in K. If M is a point 
set and p is a point of M, then the maximal strongly connected subset of M which 
contains p is called the constituent of M determined by p . 
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By the same argument it follows that any subcontinuum of C which 
extends from Gn to Hn contains a continuum which extends from Gn_i 
to Hn-i. This continuum, in turn, contains a continuum which ex­
tends from Gn-2 to #n-2, and so on, so that for any n we have 

It will now be shown that for every n, the set Qn is closed. Let p 
be a limit point of any sequence of points pi, pi, • • • , pm, • • • of Qn. 
Each point pm belongs to a subcontinuum of C extending from Gn to 
Hn. If p is not a point of any of these continua, there will exist, ac­
cording to a theorem due to Janiszewski,5 a limit continuum, again a 
subcontinuum of C, which contains p and extends from Gn to # n . 

Let An—Y^M^iQk. It is clear that the sets A\, A2, • • • , An, • • • 
form a monotonie decreasing sequence of closed, compact and non-
vacuous sets. There will exist, according to a well known theorem due 
to Cantor, at least one point p common to all the sets An. Clearly, 
p zTLn=iQn> From the definition of Qn it is obvious that the constitu­
ent of C— (F1 + F2) which such a point p determines has a limit point 
in F\ and a limit point in F2. 

2. Applications to continua in the plane. In this section we shall 
use Theorem 1 to obtain certain results regarding the common bound­
ary of two plane domains. 

THEOREM 2. If B is a bounded plane continuum which is the com­
mon boundary of two or more domains, and if C is a closed proper subset 
of B which contains at least two points, then there is a constituent of 
B — C which has at least two limit points in C. 

PROOF. If C is not a continuum, then C— C1+C2, where G and C2 

are closed, nonvacuous sets, and G £2 = 0. Then, by Theorem 1, 
there is a constituent oî B — C which has a limit point in C\ and a 
limit point in C2, and therefore two limit points in C. 

Suppose now that C is a continuum. We may distinguish two cases 
according as B is an indecomposable or a decomposable continuum. 

Suppose that B is an indecomposable continuum. Then, since C is 
a proper subcontinuum of B, it lies entirely in some composant of B. 
Let K be any other composant of B. Then KcB — C. Now, it is well 
known that any composant of an indecomposable continuum is dense 
in that continuum.6 Therefore every point of C is a limit point of K. 
But clearly, K is a constituent oi B — C. 

5 Z. Janiszewski, Sur les continus irréductibles entre deux points, Journal de l'École 
Polytechnique, (2), vol. 16 (1912), p. 98, Theorem 1. 

6 See Z. Janiszewski and C. Kuratowski, Sur les continus indécomposables, Funda-
menta Mathematicae, vol. 1 (1920), p. 221, Theorem 8. 
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Suppose now that B is a decomposable continuum. In this case, 
according to a theorem proved independently by C. Kuratowski7 and 
W. A. Wilson,8 the continuum B is the sum of two continua K and L, 
such that K'L = M+Nf where M and N are closed, mutually exclu­
sive and nonvacuous sets such that K and L are irreducible between 
M and N. 

It is easily seen that there are just four essentially different cases 
here: 

1. CcK-(M+N)f 

2. C-Af^Oand CN = 0, 
3. C = K, 
4. C D K and C^K. 
Case 1. Let Ki be a constituent of K—C determined by a point 

of My and K2 a constituent of K—C determined by a point of N. 
Then, from a theorem due to Janiszewski,9 the constituents K\ and K2 

have each at least one limit point in C. Then obviously the set 
K1+K2 has at least two limit points in C, for otherwise Ki+K% would 
be a proper subcontinuum of K which contains points of M and points 
of N. It follows that L+Ki+K2 is contained in a constituent of B — C 
which has at least two limit points in C. 

Case 2. Let x be any point of N. Denote by P the constituent of 
K—C determined by x, and by Q the constituent of L — C determined 
by x. If either P or Q has as many as two limit points in C, then a 
constituent of B—• C of the desired sort is determined. Assume that P 
has just one limit point, y, in C, and that Q has just one limit point, z, 
in C. Now if y = z, then y must be a point of M", and it follows easily 
that either P is a proper subcontinuum of K which contains a point 
of M and a point of N, or Q is a proper subcontinuum of L which 
contains a point of M and a point of N. Hence y^z, and P + Q is con­
tained in a constituent of B — C which has at least two limit points 
i nC . 

Case 3. By Theorem 1, there is a constituent of L — (M+N) which 
has a limit point in M and a limit point in N. This is the constituent 
sought. 

Case 4. In this case CL is a closed, nonvacuous and proper subset 
of L. It cannot be a continuum since L is irreducible between M and 
iV, and CL contains both M and N. Accordingly, CL = &+C2, 

7 C. Kuratowski, Sur la separation des ensembles, Fundamenta Mathematicae, 
vol. 12 (1928), p. 235, Theorem 7. 

8 W. A. Wilson, On bounded regular frontiers in the plane, this Bulletin, vol. 34 
(1928), p. 86, Theorem 6. 

9 Z. Janiszewski, loc. cit., Theorem 4. 
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where G and C2 are closed, mutually exclusive, non vacuous subsets 
of L. Hence Theorem 1 applies and a constituent of the desired sort 
is obtained. 

THEOREM 3. If D is a bounded and connected plane domain and 
M=53n«iAfw, where Mm-Mn = Q if m5^n, and each set Mn is a con­
tinuurn which does not cut the plane and which lies, except for one point 
at most, entirely in D, then D — D-M is connected. 

PROOF. Let us assume that W=D — D- M is not connected. Then, 
according to a theorem of Knaster and Kuratowski,10 there is a con­
tinuum K which cuts the plane between two points a and b of W and 
lies entirely in the complement of W. Now, if H denotes the boundary 
of D, it is easily proved that the closed set H-\-K-D cuts the plane 
between a and b. It follows by theorems due to Mazurkiewicz11 and 
Kuratowski12 that H-\-KD contains a continuum L which is the 
common boundary of two domains which contain a and b respec­
tively. 

Now the set LH must contain more than one point—in fact, it 
must contain a nondenumerable infinity of points. Otherwise, as fol­
lows easily from our hypotheses on the continua Mn, the equation 
L=L'H+]>2n~iL-Mn determines a decomposition of the bounded 
continuum L into a denumerable infinity of closed, mutually exclu­
sive and non vacuous sets. This is impossible as Sierpinski has shown.13 

Since the closed set LH contains more than one point and is a 
proper subset of L, we may apply Theorem 2. There exists, then, a 
constituent Q of L-~LH which has at least two limit points in H. 
Now Q must contain points of two different continua Mn, since each 
continuum Mn contains at most one point of H. Then Q, and there­
fore M, contains a continuum which contains points of two different 
sets Mn. But this contradicts Sierpinski's theorem. 

3. Extensions of Sierpinski's theorem. The theorem of Knaster 
and Kuratowski employed in the proof of Theorem 3 is of consider­
able importance in establishing the existence of different sorts of con-

10 B. Knaster and C. Kuratowski, Sur les ensembles connexes, Fundarnenta 
Mathematicae, vol. 2 (1921), p. 233, Theorem 37. 

11 S. Mazurkiewicz, Sur un ensemble G s, punctiforme, gui n'est pas homêomorphe 
avec aucun ensemble linéaire, Fundarnenta Mathematicae, vol. 1 (1920), p. 63, 
Theorem 1. 

12 C. Kuratowski, Sur les coupures irréductibles du plan, Fundarnenta Mathema­
ticae, vol. 6 (1925), p. 133, Theorem 3. 

13 W. Sierpinski, Un théorème sur les continus, Tôhoku Mathematical Journal, 
vol. 13 (1918), pp. 300-303. 
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nected sets.14 The content of the theorem is that if we construct a 
bounded plane set in such a way that no continuum in its complement 
separates any two points of the set, then we may be sure that the set 
constructed is connected. From this point of view the theorem of 
Sierpinski employed in the proof of Theorem 3 is of importance. From 
Sierpinski's theorem and the theorem of Knaster and Kuratowski it 
easily follows, for example, that if we delete from the interior of a 
circle a set which is the sum of a denumerable infinity of mutually 
exclusive closed sets, no one of which cuts the plane, then the set of 
points remaining is connected. It is clear that extensions of Sier­
pinski's theorem will yield us more general procedures for the con­
struction of connected sets. In this section we shall accordingly estab­
lish a few theorems relating to the following general question. If A 
and M are point sets in a compact metric space and M=y£n-*iMn, 
where the Mn are mutually exclusive closed sets, under what circum­
stances will A+M fail to contain an M-join, that is, a continuum 
which contains a point of each of two different sets Mn? 

THEOREM 4. Let P be a closed punctiform set and let M=£™-\Mny 

where (1) the sets Mn are mutually exclusive and closed, and (2) every 
component of every set Mn has at most one point in common with P. 
Then M+P contains no M-join. 

PROOF. Suppose the contrary, and let C denote an ikf-join con­
tained in M+P. Then from Sierpinski's theorem, CP is nondenu-
merable. (For our purpose it is enough that CP contains more than 
one point.) We may write CP= C1+C2, where & and G are closed, 
mutually exclusive and non vacuous. By Theorem 1, there is a con­
stituent Q of C—CP which has a limit point in Ci and a limit point 
in C2. From condition (2), the semicontinuum Q must contain points 
of two different sets Mn. Therefore Q contains an Af-join. But this 
contradicts Sierpinski's theorem. 

THEOREM 5. Let P be a closed punctiform set and M=^2n^iMnf 

where (1) the sets Mn are mutually exclusive and closed, and (2) there 
exists an e > 0 such that K is of diameter greater than e if K contains 
more than one point of P and is a continuum contained in any Mn. Then 
M+P contains no M-join. 

PROOF. Suppose the contrary, and let C denote an ikf-join con­
tained in M+P. Then, by Sierpinski's theorem, CP-CM^O. Let 

14 See Knaster and Kuratowski, loc. cit. See also P. M. Swingle, Two types of 
connected sets, this Bulletin, vol. 37 (1931), pp. 254-258, and E. W. Miller, Concerning 
biconnected sets, Fundamenta Mathematicae, vol. 29 (1937), pp. 123-133. 
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x be a point of CP—CM. Then, by a theorem due to Janiszewski,15 

C contains a subcontinuum C\ which contains x and is of diameter 
less than e. Clearly, G is an M-join. However, it is clear from the 
hypotheses of the present theorem that the sets Ci-Mn satisfy the 
hypotheses of Theorem 4, so that the existence of G contradicts 
Theorem 4. 

THEOREM 6. Let M=^2n=ziMn, where the sets Mn are mutually ex­
clusive and closed. Let P ^ J ^ A L I P * , where the setsPk are punctiform and 
closed. Tffor every k, the set M+Pk contains no M-join, then M+P 
contains no M-join. 

We omit the proof of Theorem 6 since it closely follows the lines of 
the proof of Sierpinski's theorem. 

In the present connection the following question is a natural one. 
Let M=^2n^Mnj where the sets Mn are mutually exclusive and 
closed, and let N=^2,t~iNk, where the sets Nk are mutually exclusive 
and closed. If for every k the set M+Nk contains no M-join, will 
it be true that M+N contains no ikf-join? The following example 
shows that this is not necessarily the case. 

On a linear interval (a, b) take a nowhere dense perfect set whose 
first point on {a, b) is a and whose last point is b. This will be the 
set Ni. Now on each interval (a', b') contiguous to N\ take a nowhere 
dense perfect set whose first point on (a', b') is a' and whose last 
point is b'. These perfect sets will be our sets Mn. We take as our sets 
N2, Nit N*, • • • the various closed intervals contiguous to the various 
sets Mn. It is easily seen that the conditions mentioned above are 
satisfied, and yet M+N is the entire linear interval (a, b). For future 
reference it may be noticed here that Ni has a point in common with 
infinitely many, in fact, with all of the sets Mn, and that there is a 
nondenumerable infinity of components of Ni which have no point 
in common with M. 

LEMMA. If (1) M=Yln=iMn, where the sets Mn are mutually exclu-
sive, closed and nonvacuous, and (2) N=y%2l*=iNk, where the sets Nk are 
mutually exclusive, closed and nonvacuous, and (3) for every k the set 
M+Nk contains no M-join, then C- Mn^Ofor infinitely many indices 
n, if C is an M-join contained in M+N. 

PROOF. Suppose that CMn^O for only a finite number of in­
dices n. To simplify the notation, let us suppose that C• Mn?£0 for 
n = l, 2, - - • , r, and CMn = 0 for n>r. By Theorem 1, there is a 
constituent Q oï C—C- (M1 + M2+ • • • +Mr) which has a limit point 

16 Z. Janiszewski, loc. cit., Theorem 4. 
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in Mi and a limit point in M%+ • • • + Mr. We have, of course, 
Q - M = 0. Therefore Q c N, By Sierpinski's theorem, Q must be a sub­
set of some one set Nk» But this set Nk would then contain an ikf-join. 
As this contradicts condition (3), the result follows. 

THEOREM 7. If conditions (1), (2) and (3) of the preceding lemma 
hold, and if (4) for every ky Mn-Nk^Ofor at most one ny

16 then M+N 
contains no M-join. 

PROOF. Let us assume that M+N contains an If-join C. We will 
first show that C must contain an M -join G such that G- (Mi+Ni) 
= 0. 

By the preceding lemma and by condition (4), there is a positive in­
teger j such that CM^Oand Mr(Mi+Ni)=0. If C-(Mi+Ni)9*0, 
let Kbe a, subcontinuum of C irreducible between17 Mi+Ni and M3\ 

Case 1. Suppose K is a decomposable continuum. Then K =^Ki+K2l 

where K\ and K2 are proper subcontinua of if, KIDK- (MI+NI), 
KI • Af,• = 0, iT2 3 K • Afy and Z"2 • (Mi + iVi) = 0. By Theorem 1 there is a 
constituent Q of K — K- (Mi+Ni+Mj) which has a limit point in M3-
and a limit point in Mi+Ni. From the conditions of the present theo­
rem and from Sierpinski's theorem it follows easily that Q-MT^O. 
Furthermore we have Q-K29£0. Then, clearly, Q+K2 contains an 
AT-join G such that G- (M1+N1) =0 . 

Case 2. Suppose that K is an indecomposable continuum. Since K is 
irreducible between M1 + N1 and M31 there exists a composant Si of K 
such that Si- (M1 + N1) F^O and Si-M,- = 0. For the same reason there 
exists a composant S2 of i£ such that S2- Mj^O and 52- (ikfi+iVi) = 0 . 
If 52 contains an ikf-join G, then G- (Afi+iVi) =0 . We will suppose, 
then, that 52 contains no M-join. Then, since S% is dense in if, the 
sets Ni and Mn (for n^j) are all nowhere dense in K. Likewise M3-
is nowhere dense in K since Si is dense in K. Therefore, in virtue of 
the theorem of Baire, there must exist a positive integer h 5*1 such 
that Nh is dense in some region of K. It follows that there exists a 
continuum L in S2 such that L-Mj^O and L-Nh^O. Suppose 
MrNh = 0. Then, by Theorem 1, there is a constituent 5 of 
L—L-(Nh+Mj) which has a limit point in Nh and a limit point 

16 Condition (4) can be replaced by (4'): For each given k, either (a) Mn' Nk^O 
for at most a finite number of indices n, or (b) at most a countable infinity of com­
ponents of Nk fail to have a point in common with M. In fact, it is not hard to show 
that (1), (2), (3), and (4') imply that iVcan be re-expressed as the sum of a countable 
infinity of sets in such a way that for these new sets JV*, conditions (2), (3) and (4) 
are satisfied. 

17 Z. Janiszewski, loc. cit., p . 109, Theorem 1. 
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in Mj. I t is easily shown that 5- M7*0. But then L, and therefore 52, 
would contain an M-join. We may assume, then, that Mj-Nh^O. 
Now, there is a constituent Q of K — K- (Mi+Ni+Mj) which has 
a limit point in Mi + Ni and a limit point in M3\ We will have 
Q• M7*0. Now Q must contain an ikf-join, for otherwise, Q- M = Q- Mr 

where r^jy and since Q is dense in Kf it would follow by the argument 
just used that Mr-Nh^O. But this is impossible by condition (4). 
This completes the proof that C must contain an ikf-join G such that 
Ci-(M1+N1)=0. 

In the same way as above, we now can prove that G contains an 
ikf-join Ci such that CV (ik^+iVy =0 . In general, we have Ck-i => Ck, 
where Ck is an M-join such that Ck' (Mk+Nk) = 0 . By the Cantor 
product theorem, there is at least one point p common to all the con­
tinua Ck- But this is impossible, since p must belong to M+N and 
yet does not belong to Mk+Nk for any k. This completes the proof 
of our theorem. 
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