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Von Mises has based his frequency theory of probability on the 
notion of a Kollektiv,2 that is, of an infinite sequence of trials of an 
event whose possible outcomes have each a definite probability but 
otherwise appear entirely at random. (Convenient illustrative ex­
amples are an infinite sequence of tosses of a coin, an infinite sequence 
of rolls of a die, and the like.)3 

Abstractly the Kollektiv may be represented by an infinite sequence 
of points of an appropriate space, the Merkmalraum. Or if the number 
of possible outcomes of a trial is finite (and it may well be argued that 
this is always the case for any actual physical observation4), it is 
sufficient to employ an infinite sequence of natural numbers which are 
less than a fixed natural number. This infinite sequence—of points or 
of natural numbers—satisfies certain conditions which correspond to 
those appearing in the description of a Kollektiv as just given, and 
which we shall express by saying that it is a random sequence (regel-
lose Folge). 

For the present purpose it is largely sufficient to confine attention 
to the case that each trial has only two possible outcomes, as with the 
toss of a coin adjudged as falling heads or tails, or the roll of a die 
adjudged as showing or not showing an ace. The Kollektiv may then 
be represented abstractly by a random sequence of O's and l ' s : in the 
case of the coin, for instance, we may let 1 correspond to the fall of 
heads and 0 to tails. 

The definition of a random sequence of O's and 1's as given by von 
Mises may perhaps be put in the following form: 

1 Presented to the Society, April 8, 1939. 
2 Richard von Mises, Grundlagen der Wahrscheinlichkeitsrechnung, Mathematische 

Zeitschrift, vol. 5 (1919), pp. 52-99; Wahrscheinlichkeit, Statistik und Wahrheit, 
Vienna, 1928; Wahrscheinlichkeitsrechnung, Leipzig and Vienna, 1931; and see es­
pecially the second edition of Wahrscheinlichkeit, Statistik und Wahrheit, Vienna, 
1936, for its account of the objections which have been raised to von Mises's theory 
and the alternatives which have been proposed. 

3 The introduction of an infinite sequence of trials (tosses of a coin, and so on) 
is, of course, an abstraction from the realities of the situation, made for the sake of the 
mathematical theory. It is an instance of the familiar device of employing the infinite 
as being, for certain purposes, a convenient and useful approximation to the large 
finite. 

4 In cases where the number of possible outcomes of a trial is taken as infinite, 
either there is a further element of abstraction involved (the infinite again replacing 
the large finite), or else the problem considered has no direct physical application. 
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An infinite sequence ai, 02, • • • of O's and l 's is a random sequence 
if the two following conditions are satisfied : 

(1) If f(r) is the number of l 's among the first r terms of 
0i, 02, • • • , then f(r)/r approaches a limit p as r approaches infinity. 

(2) If aWl,0n2, • • • is any infinite sub-sequence of ai, a2, • • • , formed 
by deleting some of the terms of the latter sequence according to a 
rule which makes the deletion or retention of an depend only on n and 
0i, 02, • • • , 0n-i, and if g(r) is the number of l 's among the first r 
terms of anv anv • • • , then g{r)/r approaches the same limit p as r 
approaches infinity. 

The inclusion of condition (2) corresponds to the Prinzip vom 
ausgeschlossenen Spielsystem of von Mises.5 If a fixed number of 
wagers of "heads" are to be made, at fixed odds and in fixed amount, 
on the tosses of a coin, no advantage is gained in the long run if the 
player, instead of betting at random, follows some system, such as 
betting on every seventh toss, or (more plausibly) betting on the 
next toss after the appearance of four tails in succession, or (still more 
plausibly) making his nth bet after the appearance of n+4c tails in 
succession. This is accepted by von Mises as a sufficiently familiar 
and uncontroverted empirical generalization to be made fundamental 
to his theory in this way. 

However, this definition, as given by von Mises or as rephrased 
above, while clear as to general intent, is too inexact in form to serve 
satisfactorily as the basis of a mathematical theory. 

A plausible at tempt to state the definition more exactly is the fol­
lowing (the numbers ô» serve as a convenient device to represent a 
function of a variable number of variables as a function of one vari­
able) : 

An infinite sequence ai, 02, • • • of O's and l 's is a random sequence 
if the two following conditions are satisfied : 

(1) Iff(r) is the number of l 's among the first r terms of #i, 02, • • •, 
then ƒ(r)/r approaches a limit p as r approaches infinity. 

(2) If cj> is any function of positive integers, if bi = 1, &w+i = 2&n+an, 
n̂ = 0(&n), and the integers n such that cn= 1 form in order of magni­

tude an infinite sequence wi, n2> • • • , and if g(r) is the number of l 's 
among the first r terms of anv an2, • • • , then g(r)/r approaches the 
same limit p> as r approaches infinity. 

However it has been pointed out by various authors6 that the defi-

6 Loc. cit. 
6 Erhard Tornier, Wahrscheinlichkeitsrechnung und Zahlentheorie, Journal für die 

reine und angewandte Mathematik, vol. 160 (1929), pp. 177-198; Hans Reichenbach, 
Axiomatik der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift, vol. 34 
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nition in this form is self-contradictory, in the sense that it makes 
the class of random sequences associated7 with any probability p 
other than 0 or 1 an empty class. For the failure of (2) may always 
be shown by taking <t>(x) = a^X)y where ix{x) is the least positive integer 
m such that 2m>x: the sequence anv an2, • • • will then consist of 
those and only those terms of ai, ai, • • • which are l 's. This means 
that the definition in this form does not satisfactorily represent the 
requirement that the deletion or retention of an shall not depend 
on an or on the sequence #i, a%, • • • as a whole, but only on n and 
#i, a?,, • • • , aw_i. Grave question is raised whether this requirement, 
made in vague terms by von Mises, can be satisfactorily represented 
in an exact definition at all. 

This difficulty may be avoided by abandoning the attempt to de­
fine a random sequence and substituting some less restricted class of 
sequences, such as the admissible numbers of Copeland8 or the equiv­
alent normal sequences of Reichenbach.9 

These admissible numbers (to adopt Copeland's term) are closely 
related to the normal numbers of Borel10—indeed an admissible num­
ber associated with the probability 1/2 is the same as a number 
entièrement normal to the base 2. The definition may be stated as 
follows : An infinite sequence a\, a^ • • • of O's and l 's is an admissible 
number if it is associated with a probability p and if, for every posi­
tive integer m and every set of distinct positive integers n, r2, • • • > fk 
which are all less than or equal to w, the sequence whose nth term is 
the product anm+tlanm+r2 ' ' ' a<nm+rk is associated with the probability11 

pK 

(1931-1932), pp. 568-619; E. Kamke, Über neuere Begründungen der Wahrschein-
lichkeitsrechnung, Jahresbericht der deutschen Mathematiker-Vereinigung, vol. 42 
(1932-1933), pp. 14-27; Arthur H. Copeland, Point set theory applied to the random 
selection of the digits of an admissible number, American Journal of Mathematics, 
vol. 58 (1936), pp. 181-192. 

7 An infinite sequence of O's and l's will be said to be associated with the prob­
ability p if f(r)/r approaches p as r approaches infinity, where fix) is the number of 
l's among the first r terms of the sequence. 

8 Arthur H. Copeland, Admissible numbers in the theory of probability, American 
Journal of Mathematics, vol. 50 (1928), pp. 535-552. The infinite sequences of 0's 
and l's are there taken as binary fractional expansions of real numbers between 
zero and one. 

9 Loc. cit. (1931-1932). See also Hans Reichenbach, Les fondements logiques du 
calcul des probabilités, Annales de l'Institut Henri Poincaré, vol. 7 (1937), pp. 267-348. 

10 Emile Borel, Les probabilités dénombrables et leurs applications arithmétiques, 
Rendiconti del Circolo Matematico di Palermo, vol. 27 (1909), pp. 247-271, reprinted 
as Note V to Borel's Leçons sur la Théorie des Fonctions, 2d edition, 1914, and 3d 
edition, 1928. 

11 Copeland imposes the further conditions p5*0, p?£\. 
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The admissible numbers have properties which are sufficient to 
form a basis for a large part of the theory of probability, and they 
have the important advantage that their existence, for any assigned 
probability p> can be proved.12 Their use for this purpose, however, 
is open to certain objections from the point of view of completeness 
of the theory, as has been forcibly urged by von Mises,13 and it is 
therefore desirable to consider further the question of finding a satis­
factory form for the definition of a random sequence. 

The purpose of the present note is to call attention to the following 
possibility in this connection. 

It may be held that the representation of a Spielsystem by an arbi­
trary function cf> is too broad. To a player who would beat the wheel 
at roulette a system is unusable which corresponds to a mathematical 
function known to exist but not given by explicit definition ; and even 
the explicit definition is of no use unless it provides a means of cal­
culating the particular values of the function. As a less frivolous ex­
ample, the scientist concerned with making predictions or probable 
predictions of some phenomenon must employ an effectively calcula­
ble function : if the law of the phenomenon is not approximable by 
such a function, prediction is impossible. Thus a Spielsystem should 
be represented mathematically, not as a function, or even as a defini­
tion of a function, but as an effective algorithm for the calculation 
of the values of a function. 

Now a formal definition of effective calculability, for functions of 
positive integers, has been proposed by the author,14 and the ade­
quacy of this definition to represent the empirical notion of an effec­
tive calculation finds strong support in a recent result of Turing.16 

12 Copeland, loc. cit. (1928). See also Borel, loc. cit. (1909). 
13 Mathematische Annalen, vol. 108 (1933), pp. 771-772; Wahrscheinlichkeit, 

Statistik una Wahrheit, 2d edition, pp. 116-117. 
14 Alonzo Church, An unsolvable problem of elementary number theory, American 

Journal of Mathematics, vol. 58 (1936), pp. 345-363. A function of positive integers 
is defined to be effectively calculable if it has either of the two equivalent properties 
of X-definability (in the sense of Church-Kleene) or general recursiveness (in the sense 
of Herbrand-Gödel). Cf. S. C. Kleene, \-definability and recursiveness, Duke Mathe­
matical Journal, vol. 2 (1936), pp. 340-353, and General recursive functions of natural 
numbers, Mathematische Annalen, vol. 112 (1936), pp. 727-742. 

15 A. M. Turing, On computable numbers, with an application to the Entscheidungs-
problem, Proceedings of the London Mathematical Society, (2), vol. 42 (1936-1937), 
pp. 230-265 -,A correction, ibid., vol. 43 (1937), pp. 544-546; and Computability and 
\-definability, Journal of Symbolic Logic, vol. 2 (1937), pp. 153-163. Turing proves 
the equivalence of X-definability and general recursiveness to a notion of com­
putability whose definition, briefly stated, is as follows: A function <f> is computable 
if it is possible to make a computing machine, with a finite number of parts of finite 
size, which will calculate <f>(n) for any assigned n, printing intermediate calculations 

file:///-definability
file:///-definability
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It is therefore suggested that this definition of effective calculability 
be employed in order to define a random sequence as follows : 

An infinite sequence ax, a2, • • • of O's and l 's is a random sequence 
if the two following conditions are satisfied : 

(1) If f(r) is the number of l 's among the first r terms of ai, a2, • • • , 
then f(r)/r approaches a limit p as r approaches infinity. 

(2) If </> is any effectively calculable function of positive integers, 
if i i = l , bn+i = 2bn-}-an, cn = cl)(bn), and the integers n such that cw = l 
form in order of magnitude an infinite sequence Wi, th, - - • , and if 
g(r) is the number of l 's among the first r terms of anv an2, • • • , then 
g(r)/r approaches the same limit p as r approaches infinity. 

The existence of random sequences in this sense is an immediate 
consequence of a result of Doob,16 or alternatively of a theorem of 
Wald,17 if use is made of the fact that the set of effectively calculable 
functions can be represented as a subset of an effectively enumerable 
set and is therefore itself (noneffectively) enumerable. From Doob's 
theorem, taken in conjunction with Borel's result18 that the infinite 
sequences of O's and l's associated with the probability 1/2 (regarded 
as binary fractional expansions of real numbers between zero and one) 
form a set of measure one, it follows that the random sequences as­
sociated with the probability 1/2 (similarly regarded) form a set of 
measure one; and from the existence of random sequences associated 
with the probability 1/2 the existence of random sequences associ­
ated with other probabilities is readily derived. From Wald's Theo­
rem I it follows as a corollary that the set of random sequences 
associated with a fixed probability has the power of the continuum. 

That every random sequence is an admissible number is also easily 
demonstrated. On the other hand, the set of random sequences is more 
restricted than the set of admissible numbers; this follows, for ex­
ample, from the existence of admissible numbers a%, a2, • • • such that 

and the final result on a tape with which the machine must be supplied (no upper 
limit is placed on the time or on the length of tape required for a particular calcula­
tion). Actually, Turing imposes several further conditions on the computing machine, 
but these are more or less clearly nonessential. 

16 J. L. Doob, Note on probability, Annals of Mathematics, (2), vol. 37 (1936), 
pp. 363-367. The author is indebted to A. H. Copeland for calling his attention to the 
significance of Doob's theorem in this connection, as well as to the matter of effective 
constructibility of admissible numbers (footnote 19), and for other suggestions. 

17 Abraham Wald, Sur la notion de collectif dans le calcul des probabilités, Comptes 
Rendus des Séances de l'Académie des Sciences, vol. 202 (1936), pp. 180-183, and 
Die Widerspruchsfreiheit des Kollektivbegriffes der Wahrscheinlichkeitsrechnung, 
Ergebnisse eines mathematischen Kolloquiums, vol. 8 (1937), pp. 38-72. 

18 Loc. cit. (1909). 
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an is an effectively calculable function of n, a property19 which clearly 
cannot be possessed by any random sequence. 

Thus an existence proof for random sequences is necessarily non-
constructive. 

Use of the above proposed definition of a random sequence as funda­
mental to the theory of probability is consequently open to the ob­
jection that by its means such otherwise apparently combinatorial 
matters as elementary questions of probability in connection with the 
tossing of a coin are made to depend on the powerful (and dubious) 
non-constructive methods of analysis. It is clear, however, that any 
definition of a random sequence more stringent than this one would 
have the same disadvantage, and on the other hand that no definition 
in any respect less stringent could be regarded as even approximately 
representing von Mises's intention or as being free from such objec­
tions as those brought by him against the use of admissible numbers 
or normal sequences. 

Nevertheless it would seem to be of interest to investigate criteria 
of randomness of intermediate strength, in particular the definition 
of a random sequence which results if the condition that $ be effec­
tively calculable is replaced by the condition that <fi be primitive 
recursive. Since the primitive recursive functions are effectively enu­
merable, sequences satisfying this criterion can be effectively con­
structed in accordance with Wald's Theorem V.20 

PRINCETON UNIVERSITY 

19 The example of von Mises, Mathematische Annalen, vol. 108 (1933), p. 769, 
is readily specialized so as to have this property. A very neat effective construction 
of an admissible number is implied in a paper of D. G. Champernowne, The con-
struction of decimals normal in the scale of ten, Journal of the London Mathematical 
Society, vol. 8 (1933), pp. 254-260. 

20 Loc. cit. (1937). Wald relies on the common notion of effectiveness and has no 
exact definition. His proof is entirely applicable here. Wald also remarks on a criterion 
of randomness—in general more stringent than that proposed in the present paper— 
which consists, in effect, in replacing the condition that <f> be effectively calculable 
by the condition that 4> be definable within a fixed system of symbolic logic L. There 
are, however, several objections to this criterion. It is unavoidably relative to the 
choice of the particular system L and thus has an element of arbitrariness which is 
artificial. If used within the system L, it requires the presence in L of the semantical 
relation of denotation (known to be problematical on account of the Richard paradox). 
If it is used outside of L, it becomes necessary to say more exactly what is meant by 
"definable in L," and the questions of consistency and completeness of L are likely 
to be raised in a peculiarly uncomfortable way. 


