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General Analysis. Part 2. The Fundamental Notions of General Analy­
sis. By Eliakim Hastings Moore. (Memoirs of the American 
Philosophical Society, vol. 1, part 2.) Philadelphia, American 
Philosophical Society, 1939. 6 + 255 pp. 

The first part of this work, embodying the contributions of the late 
E. H. Moore on general analysis, was reviewed in this Bulletin, vol. 
42 (1936), pp. 465-468, by C. C. MacDuffee.1 The first part was de­
voted in the main to considerations of an algebraical character, 
no notion of continuity or limit being involved. While a general 
variable appears in the considerations, its generality is only incidental 
in that it is usually permitted to assume at most a finite number of 
distinct values. This second part begins a study from the point of 
view of analysis, in that limits notions play a substantial role. I t is 
general analysis in the sense that a general unconditioned variable 
is involved. 

The basis of this part includes a number system 2Ï of the type used 
at the end of the first part, with a continuity axiom added, namely, 
the existence of a greatest lower bound for nonvacuous sets of posi­
tive numbers. The resulting number system is then shown to be iso­
morphic to either the real number system, the complex number 
system, or the system of quaternions. There is assumed a general 
range ty unconditioned. Vectors enter as functions on ty to 21, mat­
rices as functions on ty1($2 to 21, and so on. While recent developments 
in linear functional analysis usually postulate a vector without con­
sidering it as a function on some range, the assumption made here, 
aside from its inherent advantages, has additional justification in that 
virtually all examples of the notion of vector have the character of a 
function. 

The first chapter of this part (Chapter IV of the complete work) 
is devoted to an exposition of the notion of general limit. The general 
limit is a natural generalization of the notion of limit of a sequence, 
the positive integers being replaced by a general set 8 of elements /, 
on which there is given a relation R on pairs of elements which is 
transitive, that is, such that h R k and h R h imply h R Z3, and com­
positive or semiordered, that is, h and h imply the existence of an I 

1 A review of this same part by the present reviewer appeared in Zentralblatt fiir 
Mathematik, vol. 13 (1936), pp. 116-117. We take this opportunity to correct a mis­
print appearing in MacDuffee's review, namely, the definition of general reciprocal 
X of a matrix K in the second last line of page 467 should read SSKKK = K instead of 
SS\K = K. 
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such that I R h and / R Z2. Then the definition liwnai = a follows the 
usual formula: for every positive e, there exists an le such that I R le 

implies |a^ — aj <e. All the well known limits of analysis are special 
cases of this limit, provided in the continuous limit l i m * ^ ƒ(#) = & it 
is assumed that X^XQ. In this particular work, the special case most 
frequently used is that in which the element I of 8 consists of a finite 
number of points a of a set ^3, and the relation a\ R <s% means that G\ 
contains all of the points of (T2. In the theory of integration this limit 
has demonstrated its usefulness in its interpretation of / as a partition 
of the fundamental set into permissible subsets, the relation R being 
the notion "finer than." A detailed exposition of the principal proper­
ties of this limit as well as a theory of double and iterated limits is 
given. An interesting notion presented in this chapter is that of gen­
eral sumi^idi. Essentially ^ i is lim, J ^ a i , where c = Zi, • • • , h. As 
might be expected, the general sum exists only if at most a denumer-
able number of the elements ai are different from zero, but the inter­
esting thing is that the general sum can exist if and only if the sum of 
the absolute values exists, which applied to sequences says that an 
infinite series converges absolutely if and only if it converges in the 
sense that a spreads. 

The next chapter (Chapter V) gives an exposition of the basic fea­
ture of this contribution to general analysis, namely, the important 
theorem that any positive hermitian matrix (that is, a function e on 
$ $ to 31 for which e(pip2) = ê(p2pi) and such that if ply • • • , pk 

are any elements of $ , and ai, • • • , a&, any numbers of 21, then 
y^2i^2iàie(pipj)aj = SaS(râea^O) defines a normed linear vector space, 
which has an inner product, or hermitian form, that is, is a gen­
eral unitary space. The process of definition involves carrying over 
the notion of limited or modular matrix to limited or modular vector, 
and replacing the Kronecker S by the positive hermitian matrix e; 
that is, we have that the vector £ on ^ to 31 is modular relative to e 
if and only if the | 5<rô:£| is bounded for all a of $ , and all a such that 
SaSaâea^l. The least upper bound of these values when it exists 
is called the modulus of £, and the vectors for which this number is 
finite form the class 5DÎ of modular vectors JU, which is a linear normed 
vector space, I t is possible to obtain other forms of this notion of 
modularity. A vector £ is modular if there exist scalars s, such that 
the matrix es2 — ^ = e(pip2)s

2 — $;(pi)$;(p2) is positive, the smallest 5 for 
which this is so being the modulus of £; or if y , is the general recipro­
cal of €<r = e(pipi)1 ( i , j = 1, • • • , n), then £ is modular if the expression 
SoSJ^yat; is bounded as a function of <r, and the least upper bound or 
limit in the a sense of these scalars gives the square of the modulus. 
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If the matrix e is positive definite, then this latter expression is well 
known as the quotient of two determinants, the denominator being 
that of e(pipi), (i, J = l, • • • , «), and the numerator being obtained 
by bordering this matrix with 0, £(pi) and £(£?)• It should be men­
tioned that the general reciprocal defined in Part I shows its useful­
ness here, in that it need not be assumed that the columns or rows 
of e are linearly independent vectors. Moreover in addition to the 
boundedness property, the definition requires of any vector which is 
modular an accordance property; that is, if any set of rows (or col­
umns) is linearly dependent, the corresponding places in the accord­
ant vector satisfy the same dependence relation, that is, the rank of 
any submatrix of e finite by rows is not changed by adding the ac­
cordant vector £ to the columns. 

The matrix e gives rise to a bilinear integration process, namely, 
lim, SffSaïy<rri = Ji-rj (y, the general reciprocal of €,), effective between 
any two vectors which are modular, and resulting in an hermitian 
form, which gives us then a general not necessarily separable Hubert 
space. 

Special cases of the notion of modularity are interesting. I t is obvi­
ous that when $ is the set of positive integers, and e is the Kronecker 
ô, then we obtain ordinary Hubert space as the space of modular 
vectors. There are obvious generalizations of this to the case when $ 
is any. If ty is the continuous range O r g ^ ^ l , and e(pip2) is the 
greater of pi and p2} then modular vectors are absolutely continuous 
functions £ such that %(p) = f*<l>(g)dq where 4> is of L2. If j8(J3) is a 
positive additive set function, then the positive hermitian matrix 
/3(£iE2) gives rise to Hellinger Radon integrals, for p = 2. If fl>pn are 
complex-valued vectors in ordinary Hubert space for each p, then 
the positive hermitian matrix avq =^nàvnaqn gives rise to a modular 
space which plays an important role in the Schmidt theory of solu­
tions of a system of infinitely many equations in Hubert space.2 If we 
think of $ as consisting of the elements/ , g, • • • of a Hubert space, 
with hermitian form (ƒ, g), then the positive hermitian matrix (ƒ, g) 
on tyty to §1 plays an important role in extending the results valid in 
a separable Hubert space to the non-separable case.3 The process set 
up by Moore reveals itself in this setting as a natural generalization 
of the reduction of a denumerable system of vectors to an equivalent 
orthonormal system. 

2 See Riesz, Les Systèmes d'Équations Linéaires à une Infinité d'Inconnus, p. 66. 
3 See Y. Y. Tseng, The Characteristic Value Problem of Hermitian Functional Op­

erators in a Non-Hilbertian Space, University of Chicago thesis, 1933. Compare with 
F. Riesz, Szeged Acta, vol. 7 (1934-1935), pp. 34-38. 
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The balance of the chapter is taken up with convergence of modu­
lar vectors. We have a weak convergence (called mode 1) which in­
volves convergence of in for each p oî ty, and the ultimate bounded­
ness of MfjLiy and the usual strong convergence (called mode 2) equiva­
lent to the convergence to zero of M(fxi — ix). In a later chapter it is 
proved that the former convergence is equivalent to the convergence 
of L(fii) to L(IJL) for every linear continuous functional operation L on 
50Î to 31, that is, the current définition of weak convergence. There is 
also introduced the notion of a sum of a set of vectors, involving a 
very strong type of convergence: ^iMi. 

Chapter VI is devoted to modular matrices. The definition of 
modular or limited matrix is, as might very well be expected from 
an analogy with vectors, as follows: nl2 = n{plp2) on "Ç1^2 to 21 is 
modular relative to the positive hermitian matrices e1 on tyl<$1 to 21 
and e2 on $ 2 $ 2 to 21 if S^S^alKl2a2 is bounded for all a1 and <J2 and 
all a1 and a2 such that .SJSJâleW ^ 1 and S<,*Sa*â2e2a2 g 1. There fol­
lows a thoroughgoing study of conditions of modularity, and ques­
tions of various kinds of convergence of modular matrices. Relative 
uniform convergence which plays such a prominent role in Moore's 
first general analysis enters naturally in the equivalence of strong 
convergence, that is, limu M(KP — K12) = 0 with that of JlJ2p,lKi12jm2 

to J W / c 1 2 ^ 2 uniform relative to M\xxM\x2. For hermitian matrices 
it develops that a weak modularity, namely, the boundedness of 
SaSaâKa for all a and a such that S^Saaea^l is necessary and suffi­
cient for modularity; further, if the number system 21 is not the real 
number system, this is also true for any matrix K on $ $ to 21 modular 
relative to e, e. 

Chapter VII treats of linear functional operations, bilinear func­
tional operations and linear functional transformations, especially 
those which are continuous or limited. In this setting every continu­
ous linear functional operation is of the form /fju, £ modular, every 
limited or continuous bilinear functional operation determines and 
is determined by a modular matrix K12, namely, /c12 = 5(e1 , e2) and 
•#(M\ M2) = / 1 / 2 / Z 1 / C 1 V 2 , and every continuous linear transformation T 
on the modular class 5DÎ2 to SDÎ1 is also determined by a limited matrix, 
namely, K12 = Te2 with T\x2 = JVfy 2 . Every completely continuous 
transformation, being defined as one in which weak convergence in 
W2 implies strong convergence in 3D?1, is the strong limit, that is, in 
the sense of the modulus of the transformations, of a transformation 
of a finite number of dimensions each of which is completely con­
tinuous, and the form of this approximation is the simple expression 
J^K12IX2 = 5<r2/c127ff22/x2, where y„* is the general reciprocal of e^2. Vari-
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ous kinds of convergence of sets of linear, bilinear operations, and 
transformations are discussed. In many respects the last two chapters 
might be thought of as carrying over into the general setting the 
results of Hubert and his followers on limited matrices and functional 
operations on ordinary Hubert space. 

The method of exposition in this second part follows closely the 
lines of the first part. Each chapter has an introduction giving an 
excellent survey of the material to be covered in the chapter, most 
theorems are stated not only in words, but also in the adaptation of 
the Peano symbolism introduced by Moore. To any one reading any 
considerable portion of this work, and consequently acquiring easily 
a familiarity with the symbolism used, this constant presentation of 
the same ideas in two forms unfortunately gets to be a little bit tire­
some. The exposition is throughout very clear, very easily followed, 
and might even in some instances have assumed greater intelligence 
on the part of the reader. The reviewer was conscious of the paucity 
of references to the supporting literature, especially that current at 
the time when these developments of Moore were under way. While 
an isolationist point of view may have been justified at the time of 
development, the work would be enhanced historically and in com-
prehensibility if more frequent contacts with the literature were made 
available, and this would be in line with the spirit of E. H. Moore 
as the reviewer knew him thirty years ago. 

To make an estimate of the value of this publication at this time 
is a little difficult. Much of it seems only historically worth while in 
the light of more recent developments in linear functional theory. 
The general limit has already shown its value in recent work. In the 
same way, the reviewer feels strongly that the notion of modularity 
is important, as well as the constructive procedure for hermitian oper­
ations on which Hilbert spaces are based. These two notions alone 
make this part worth while. Many of the results presented are basic 
to the parts of this publication to appear later, and so complete judg­
ment must be deferred until these further developments are pre­
sented. 

T . H . HlLDEBRANDT 

Lezioni di Analisi Matematica. Part 1. By Francisco Tricomi. 4th 
edition. Padova, Cedam, 1939. 8 + 328 pp. 

It is to be understood that this is the first of two volumes on analy­
sis and hence the author's aim is only to cover some of the traditional 
fundamentals of algebra and calculus. 


