BICONTINUOUS LINEAR TRANSFORMATIONS IN
CERTAIN VECTOR SPACES*

E. R. LORCH

A bounded linear transformation T of a vector space ¥ into itself
will be called bicontinuous if the inverse of T (defined, of course, over
the entire space) exists and is continuous. The group of bicontinuous
transformations is dominant in any study of equivalence of transfor-
mations; that is, in the determination of the conditions implying
relations of the type B=T-1AT. The results of this paper constitute
an analysis of the structure of bicontinuous transformations in cer-
tain spaces. Previous results of the authort indicate that the analysis
here given is of a nature which will be useful in the equivalence prob-
lem, not only for transformations 4 which have a simple spectrum
but also in more general situations.

First the notion of a basis in a normal linear vector space Bi is
considered. A sequence of vectors {gb,,}, ¢. e B, is customarily said
to form a basis for B (necessarily separable) if for every f ¢ B there ex-
ists a unique sequence of numbers {a,,,} such that f =Z:° @nPa.§ This
definition is open to two objections: It involves the notion of order
of the elements of the basis; and for that reason it does not permit
of immediate extension to nonseparable spaces. A new definition of
basis is given below which is free of these objections. Proceeding in
what is apparently another direction, the notion of complete ortho-
normal set in Hilbert space (these sets form bases) may be extended
to spaces 8. Thus after modifying suitably the idea of orthogonality
and normality, one obtains a “heterogonal set.” It is proved below
that the concepts of heterogonal set and of basis are equivalent.

In the second part, we deal exclusively with complex euclidean
spaces @;| briefly, these spaces are either unitary spaces, Hilbert
spaces, or nonseparable spaces of the Hilbert space type. The prin-
cipal result is that if {¢>a} and {zpo,} are bases (or heterogonal sets)
in G, then there exists a bicontinuous transformation T such that
Téo=vy.. Since the T transform of a basis is a basis (see below), the
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characterization of bicontinuous transformations from this angle is
complete.

1. Bases and heterogonal sets in 8. We first introduce a definition.

DEFINITION 1. A set of elements {¢a; o ¢ M} with ¢po & B will be
said to be a basis in B if

@) K—lénq&a]l =K, for some number K, for all « ¢ M;

(i1) To every f e B, there is associated a unique set of numbers
{aa; & ¢ M}. The association is such that a,=0 except for at most
a denumerable set of o &€ M and f= aemlada, the convergence to the
element f being independent of the order of summation.

A set of vectors {{.; @ ¢ M} is said to be an independent set if

10aa;=0 implies a,,=0, i=1,---, n. The set is said to span
P if the elements ) 1@ae; lie dense in B. A set {va; a ¢ M} with
Y«=0 or 1 will be called a set of selectors. Clearly, {(1 —Ya); o e M}
is then also a set of selectors. A subset of {{u; @ ¢ M} (to which the
element 0 e B may have been added) may be indicated by
{(Yotba; a e M},

A projection P in B is a bounded linear transformation such that
P?=P. With such a transformation are associated two closed linear
manifolds I and N having the properties P =T (the identity) on IN;
P=0 on N; every element f ¢ B is uniquely expressible in the form
f=g+h, geM, heN. A converse statement may be made. Let
{Ya; @ ¢ M} be a set of selectors, let It be the closed linear mani-
fold spanned by {’ya\[za; ae M }, let M be that spanned by
{(1-—7.,)\0,,; ae M} If for every f ¢ 8B, the equation f=g-+k with
g e M, k ¢ N has a unique solution, then P and N determine a pro-
jection in the sense indicated above. All projections subsequently
treated are of this type.

DEFINITION 2. A set {Yo; a ¢ M} with Yo ¢ B will be said to be a
heterogonal set in B if

(i) K—1=||y.l| SK, for some K, for all . e M;

(ii) For every set of selectors {va; a ¢ M} the manifolds M and N
spanned by {'yag&,,; ae M } and {(1 —Ya)Wa; e M } , respectively, gen-
erate a projection.

The projections just mentioned will be called the projections of the
heterogonal set. If P;, P, are projections of the set, then P, P,=P.P,
is also a projection of the set. If P,P;=0, then P,+ P, is a projection
of the set. It is clear from (ii) above, that the ¥, span B and that
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D t0ea;=0 implies a,,=0, i=1, .-, n. The projections of (ii)
are studied in the lemma which follows.

LeMmMA. The projections of a heterogonal set {%; aeM } in B are
uniformly bounded.

The contrary is assumed. Then M is an infinite set. It will be
shown that there exist projections P; and closed linear manifolds ;,
1=1, 2, - - -, the P; spanned by certain finite subsets of {zﬁa; aeM } s
such that PB;-PB;=0, i54,* M:c P;, and such that the bound of P;
on P; exceeds K, where K >0 is arbitrary. Let It be the closed linear
manifold spanned by the manifolds I;, 2=1, 2, - - - . Let P be that
projection of the heterogonal set whose range is . Then P =P; on
PBs; hence IP ] >¢K,4=1, 2, - - - . This is the desired contradiction.

It remains to indicate how the P;, P; are determined. Let P{ be
any pro;ectlon such that | P! | > K. Let || P! f|| > K||f||; let N, Yasr @as,
i=1 -, Ny, be so chosen (by Definition 2 (ii)) that if g=> Y'deW e,
lr— g[l is small; thus || P{ g]| > K||g]|. The manifold % is the manifold
spanned by {1#0,”} , = Ni. Let Pg, be the projection of the heterog-
onal set whose range is P,. Then P, is defined by P,=Pg,-P/. Let
M, be the set M minus the elements a, - - - , ax,. Let Q; be the mani-
fold spanned by {tﬁa; ae Ml}. Now it may be seen that, as a con-
sequence of the assumption introducing the proof, there exists a
projection Py whose bound over £, exceeds 2K. This results from
the equation Pf=P.Pg f+4P(f—Pg,f) valid for any projection P of
the heterogonal set. We may, as above, find an integer N2> N, ele-
ments Y., Ni<#n=N,, such that if P, designates the manifold
spanned by {%:,,; Ny <n§N2}, the bound of P/ on P, exceeds 2K.
The projection P, is then defined by P;=Pg,- P/ where Pg, is the
projection of the heterogonal set whose range is P;. The construction
of Pi, Pi, £>2, is now simple.

We are now in a position to prove the following theorem.

THEOREM A. A4 set of vectors {¢>a; aeM } is a basis in B if and only
if it is a heterogonal set in B.

It will be asssumed that the set {¢a; e M} is a basis. Let
{Ya; @ e M} be a given set of selectors. Let fe B, =2, ylabe

Since this series converges unconditionally,} any subseries converges.
Thus

* That is, Bi and PB; have only the element 0 in common for 7545,

t W. Orlicz, Studia Mathematica, vol. 1 (1929), pp. 241-255. A series is said to
converge unconditionally if the property of convergence is independent of the order
of summation.
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f =g + h, g = Z YalaPa, h = Z (1 - 'Ya)a’aqsa-
aeM aeM
It will be shown that the representation f=g-% is unique. This will
be accomplished if it is shown that if 9t is the manifold spanned by
{fyaqba; ae M} and j= q¢pbaba € M, then b,=0 in case y.=0. A
sequence {¢.,} is chosen in such a way as to permit writing

hed N n N
j = Z bi(ba«;; k= 2 ‘Ya,’cid)diy I = E bi¢a.- - Z 'Ya.,-cid)a; = Z di¢a,~;
1 1 1 1

with ”l” small at will by suitable choice of »n, N, ¢;. If v,,=0, b:#0,
then d;=0;. Now there exists a constant L such that

| di| = Llld]/lloed] = KZd].*

Thus v.;=0 implies b;=0.

It is now assumed that {¢a; ae M} is a heterogonal set. Let o be a
fixed element in M let P, be that projection of the heterogonal set
whose range is spanned by ¢.. The numbers a, required in Definition
1 are defined by P.f=a.$.. Since {c,ba; ae M} spans B, for an €>0,
elements ¢,,; and numbers b,,; can be found, =1, - - -, N(e), such that

<e.

N
f - Z bai¢a;
1

This implies the existence of a denumerable set M’ e M such that
{¢a; @ ¢ M’} spans a manifold containing f. If a ¢ M’, then P,f=0.
Thus all but at most a denumerable number of the “coordinates”
@, are zero. Let {oz,-}, 2=1, 2, - .-, be any ordering of M’. It will
be shown that

lim || f — D Gaibe;|| = 0.
n— 0 1
Write Pn=Z§'Pa,.; for €>0, numbers b;, 2=1,---, N, may be
found such that
N
Hf— Zbi¢ai < €.
1

Choose L >0 by the Lemma such that ]P,,| <L. Then for = N,

Jr (-0

* S. Banach, loc. cit., p. 111. The proof may be altered to meet our requirements.

=< Le.

N
= H-Pnf_ Zbi¢ag
1
Thus
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< (1 + L), nz N.

Ir = Pufll = H f- }: tebes

Toward proving the unique representation of f, assume

f= Zaa¢a = an¢a~

aeM aeM

Then 0= a¢u(@o—Ca)Pa; instead of Y wes(@Ga—Ca)pa, Write Er’d@a;.
Thus for €>0, #>ny, |2 1dip.,|| <e, and for i <n,

2. Bicontinuous transformations in & From now on, the space
under consideration is a complex euclidean space €. In such a space
it is always possible to find a complete orthonormal set {¢a; ae M }
which is a basis for §; f ¢ € implies

f=2 abe, P = 2] el

aeM ae

Pa;( Z did’a;)
1

| =l = 2

and d;=0.

THEOREM B. Let {¢,,; ae M } be a basis in a complex euclidean space
@. The set of vectors {Wo; @ e M} is a basis in G if and only if there exists
a bicontinuous transformation T such that Tde=y., o e M.

The existence of T is assumed. Let
K=< |¢| S K, aeM; |T|=S, |T]=5.

Then (KS)1<||T¢.|| <KS. If f ¢ G,

f= 10 = 7( Z 0u0e) = T aulrs)

aeM aeM

gives the expansion of f in terms of the ¢¥,=T¢.. It can readily be
seen that {{,; @ ¢ M} is a basis in €.

It is now assumed that {\//a; ae M} is a basis in €. We may and
shall assume that {¢.; « ¢ M} is a complete orthonormal set. Let
L>0 be the uniform bound of the projections of the heterogonal set
{tk,; ae M } (the Lemma and Theorem A). Using the identity

I+ gl + Il — el = 2dI71® + llll»,
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with fand g arbitrary in &, which characterizes €,* one obtains for
arbitrary ¥a;, Gy t=1,- -, n,

S NPMEED Y,
1

n 2

Z t Gaey
1

1) i
= 2”;” aae‘/’ail

where D’ is a sum extended over all possible sign distributions. This
shows that for some particular sign distribution §;= +1,

n 1/2
=K<Z|da,~2> .
1

" i 1+6; n 1 -
Z GaWa; = Z 0 ——— GaYa; — Z 0; —
1 1 2 1 2

2 < Z”Kzi' aa‘,lz’
1

Z 8iaa."//a.'
1

Now
0;

aai aiy

and each of the last two vectors is a projection of ) 18:¢e¥a;. Thus
n 1/2

=< 2KL< > aa,.lz) .
1

This implies that the transformation which carries D 1@ape; into

n . . . . .
> 1@ e, is continuous. The closed linear extension of this transfor-

mation will be called T.
Theinequality (1) indicates that for some sign distribution §/ = +1,

n 1/2
_—1< Zl Qa; 2) 5
1

Va;

Vo

and since

n L | 6:
Z 8l GaYa; = Z T
1 1 2

I

n
a’aa ag Z aat gy
1

this gives

=< 2KL

n n
Z Coaibe; Z GaVa;
1 1

This implies that the transformation T has a bounded inverse.
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