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fined by (3.11) admits solutions H(x\ y) of the equations (3.7) other 
than H = xn. By methods similar to those hitherto employed, we find 
that the most general solution for H of the form H=H(xn, y) is 

(3.13) ff = «(?)•*» + 0 ( y ) , c = 0, 

or 

(3.14) H = a(y)'Xn, c ^ 0, 

where a(y) and /3(y) are arbitrary functions of y. We note that the 
En+i obtained by using the H defined by (3.14) coincides with (3.12). 

I t can be shown that solutions for H which involve some of the 
xv do not exist unless the En defined by (3.11) may be mapped con-
formally on another Einstein space in more than one way. Hence, if 
this is not the case, the En's may only be imbedded in the unique 
E n + i defined by (3.12) if c^O and only in the En+is defined by (3.1), 
(3.11), and (3.13) if c = 0. In this last case, a = o = 0. 

BROOKLYN COLLEGE 

CONCERNING THE BOUNDARY OF A COMPLEMENTARY 
DOMAIN OF A CONTINUOUS CURVE* 

F. B. JONES 

Much study by various investigators has been given to the nature 
of the boundary of a complementary domain of a locally compact 
continuous curve in the plane and in certain other spaces, f I t is the 
purpose of this paper to continue this investigation in less restricted 
spaces which satisfy the Jordan curve theorem and to establish cer
tain results (from which many of the known results follow immedi
ately) in such a way as to bring out what is essential for their validity. 

I t is first necessary to establish the following lemma. 

LEMMA A. If a locally compact nondegenerate continuous curve M in 
a complete Moore space contains no simple triod, then M is a simple 
continuous curve. % 

* Presented to the Society, December 30, 1938. 
t See the bibliography and Chapter 4 of R. L. Moore's Foundations of Point Set 

Theory, American Mathematical Society Colloquium Publications, vol. 13, New York, 
1932. Hereinafter, this book will be referred to as Foundations, and the reader is 
referred to it for many theorems and the definition of certain terms and phrases used 
in this paper. 

% A complete Moore space is a space satisfying Axioms 0 and 1 of Foundations. A 
simple continuous curve is either a simple continuous arc, a simple closed curve, an 
open curve, or a ray. 
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PROOF. With the help of Theorems 118 and 120 in Chapter 1 and 
the arguments for Theorems 6 and 7 in Chapter 2 of Foundations, 
it is easy to see that if "point" is interpreted to mean a point of M 
and "region" is interpreted to mean an open subset of M, then as a 
space, M satisfies Axioms 0-2 of Foundations and "limit point" is in
variant. Suppose that H is any compact subcontinuum of M. By 
Theorem 65 in Chapter 1 of Foundations, H contains two distinct 
points, Ai and A2, which are non-cut points of H. Suppose that P 
is a point of H distinct from Ai and A2 which is a boundary point of H 
with respect to M. Let D denote a connected open subset of M con
taining P such that D contains neither Ax nor -42. The set D contains 
a point A 3 of M—H. Let d\ and d2 denote mutually exclusive con
nected open subsets of M containing Ai and A2, respectively, but 
containing no point of D. For each point X of H—(Ai+A2), there 
exists a connected open subset dx of M containing X but not contain
ing Au A2i or Az. Let d denote ^dx for all points X of H— (A1+A2). 
Then since H—A2 is connected, D-\-d\-\-d is a connected open subset 
of M—A2 containing Ai and A3. By Theorem 1 in Chapter 2 of 
Foundations, there exists an arc 7\ in D+di+d from A\ to A$. Since 
H—A\ is connected, <22+d is a connected open subset of Af containing 
H—A\ and a point of 7\. Let r 2 denote an arc in d 2 +d irreducible 
from A2 to 7\. Then T1 + T2 is a simple triod contrary to hypothesis. 
Hence no point of H distinct from Ai and A2 is a boundary of i î with 
respect to M, and consequently no compact subcontinuum of ikf has 
more than two boundary points with respect to M. Then by Theorem 
20' in Chapter 2 of Foundations, M is a simple continuous curve. 

COROLLARY. If a compact nondegenerate continuous curve in a com
plete Moore space contains no simple triod, then it is either an arc or a 
simple closed curve, f 

The results of this paper that follow assume that Axioms 0-4 of 
Foundations hold true. Let 5 denote the set of all points. 

THEOREM 1. Suppose that K is a locally compact continuum lying 
in the boundary of a connected domain D. Then in order that K be a 
continuous curve it is necessary and sufficient that K be a subset of a 
continuous curve M which contains no point of D. 

PROOF. The necessity is obvious. I t remains only to prove the suffi
ciency. Suppose, on the contrary, that K is not connected im kleinen 
at a point O of K. Then there exists a domain Qi containing 0 such 

t Cf. Theorem 71 in Chapter 4 of Foundations. 
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that Qi'K is compact and the component of Q\K which contains O 
is not open with respect to K at 0. Let Q2 denote a domain containing 
0 and lying together with its boundary in Qi- There exist two se
quences of points Oi, 02, 03, • • • a n d Pi, P2, Ps, • - - such that (1) 
for each n, (n*= 1, 2, 3, • • • ), On and Pn belong to the same compo
nent of Qi'K, (2) if m^n, then 0m and On belong to different com
ponents of Qi'K, and (3) 0i, 02, O3, • • • converges to 0 and 
Pi, P2 , P3 , • • • converges to a point P of Qi K distinct from 0. 
Let U and F denote two connected open subsets of M containing 0 
and P , respectively, such that U- F = 0. By (3) there exist three in
tegers tiu ftei and w3 such that 0 n i , 0„2, 0n 3 and PW1, Pn 2 , P n s lie in U 
and F, respectively. For each i, (i = l, 2, 3), let 7\- denote the com
ponent of Q*-K that contains 0»<+P»<. By (2), 7 Y 7 \ = 0 if i V j . 
Hence, Pi, P2, and P3 are mutually exclusive compact continua ly
ing in Qi - K, and each contains both a point of U and a point of V. 
For each i, (i = 1, 2, 3), there exists a finite collection i?»- of sets such 
that (a) each element of Hi is a connected open subset of M contain
ing a point of Tu (b) if» covers P»-, (c) no element of Hi contains a 
point of an element of Hj if i^j, and (d) no element of Hi contains 
both a point of U and a point of an element of Hi containing a point 
of V. The set Ht is a connected domain with respect to M containing 
TiA By Theorem 10 in Chapter 2 of Foundations, there exists, for 
each i, (i= 1, 2, 3), an arc F^Z; in i l f from a point F< of Z7 to a point 
Zi of F. Let FiF 2 and F1F3 denote arcs lying in V and ZiZ2 and 
Z1Z3 denote arcs lying in F, with end points as indicated. Then there 
exist three arcs A W\B, A W2B, and A W^B from a point A of V to a 
point P of F lying in F1F2+FiZi+ZiZs, F1F2+F2Z2+^1^2, and 
F1F3+F3Z3+Z1Z3, respectively, which have only their end points 
in common. Let co, "the point at infinity," be a point of D. From 
Theorems 4 and 5 in Chapter 3 of Foundations, it follows that the 
sum of one pair of these arcs, say AWiB+AWzB, forms a simple 
closed curve J whose interior contains the other arc less its end 
points, that is, AWJB — (A+B). By (d) above, it is clear that some 
element d of H% contains a point of A W2B and a point X of P2 but no 
point of U+ V. By (c), d contains no point of H?+Ht- Consequently, 
d contains no point of J since / lies in U+H?~{-V+H£. But X is 
a boundary point of D. Hence D+d is a connected set containing no 
point of / but containing co and a point of A TF2P in the interior of J, 
which is a contradiction. 

EXAMPLE. Theorem 1 is false if the stipulation that K be locally com-

f Hi* denotes the sum of the elements of Hi. 
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pact is omitted. This may be seen in an example discovered by R. L. 
Moore some years ago but as yet unpublished. This example may 
be roughly described as follows. In a euclidean 3-space for each n, 
(w = l, 2, 3, • • • ) , let C7n denote a circular cylinder whose radius is 

1-\1——l 
2Ln n+ 1 J 

and whose axis is a line parallel to the z axis passing through 
(1/n, 0, 0). Let 5 denote the set of all points P such that either 
(1) P is in the #;y-plane but is not, for any n, (n = 1, 2, 3, • • • ), within 
Un, or (2) P is in the plane z = 1 and is, for some integer n, within Un, 
or (3) P is, for some integer n, in Un and either in or between the 
planes 2 = 0 and z — 1. If "limit point" is given the ordinary 3-dimen-
sional sense, 5 satisfies Axioms 0-5 of Foundations. Let K denote the 
intersection of the xz-plane with S\ let M denote all of the points of S 
either on or between the two planes y = 0 and y = 1 ; and let D denote 
the component of 5 — M which contains (0, —1,0). Then M is a con
tinuous curve in S and K is a continuum in S lying both in M and 
in the boundary of M. But obviously K is not connected im kleinen 
at (0 ,0 ,0) . 

This example should be remembered in connection with certain re
sults to follow—Theorem 8, in particular. 

Theorem 1 establishes the truth of the following two theorems. 
THEOREM 2. Every component of the boundary of a complementary 

domain of a locally compact continuous curve is a locally compact con
tinuous curve. 

THEOREM 3. If the boundary of a complementary domain of a locally 
compact continuous curve is connected, it is itself a locally compact con
tinuous curve, f 

THEOREM 4. If D and Q are two mutually exclusive connected do
mains whose boundaries contain a simple closed curve J, then J sepa
rates D from Q. 

PROOF. Suppose, on the contrary, that D and Q both lie in / , one 
of the complementary domains of / . Let co, "the point at infinity," 
be a point in the other complementary domain of J. Then / is the 
interior of / . There exists in D an arc segment T whose end points, 
A and By lie on / . } There exist two points, C and F, of / which are 

f Cf. Theorem 40 in Chapter 4 of Foundations. 
t A connected open subset of non-end points of a simple continuous curve is 

called a segment. An arc segment is a segment of an arc. 
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separated on / by A and B. Let I\ and 72 denote the interiors of A CB 
(of J) + T and A FB (of J ) + T, respectively. By Theorem 4 in Chap
ter 3 of Foundations, I=T+Ii + l2. Since Q lies in / and contains 
no point of r , Q is a subset either of i i or of 72. If (? lies in 7i, then JP 
is not in the boundary of Q, and if Q lies in 72, then C is not in the 
boundary of Q. In either case, some point of / is not in the boundary 
of Q which is a contradiction. 

THEOREM 5. If D is a connected domain and E is a point of S — D, 
then the outer boundary of D with respect to E is either acyclic or a 
simple closed curve, f 

PROOF. Suppose that the boundary of Q, the component of S — D 
which contains E> contains a simple closed curve / . Then J is in the 
boundary of both D and Q. If the boundary of Q contains a point P 
not in / , then P is obviously in the boundary of D and D + P + <2 is a 
connected subset of S — J. But this contradicts Theorem 4. Hence / 
is the complete boundary of Q. 

THEOREM 6. If D is a complementary domain of a locally compact 
continuous curve My and E is a point of S — Dy then every component of 
the outer boundary of D with respect to E is a continuous curve. 

PROOF. Let C denote a component of the boundary of Ç, the com
plementary domain of D which contains E. Then C is a subset of a 
component K of the boundary of D. By Theorem 2, K is a locally 
compact continuous curve. But K contains no point of Q\ hence, by 
Theorem 1, C is a continuous curve. 

THEOREM 7. If D is a complementary domain of a locally compact 
continuous curve My and E is a point of S—Dy then every component of 
the outer boundary of D with respect to E is atriodic. 

PROOF. Let C denote a component of the boundary of Q, the com
plementary domain of D which contains E. Suppose that C contains 
a triod. Using the preceding theorem and Theorem 10 in Chapter 2 
of Foundations y it can be shown that C contains three arcs AxOy A2Of 

and AzO which have only the point O in common. Let di, d2l and d3 

denote three mutually exclusive connected open subsets of M con
taining Aiy A2l and Az9 respectively, but not containing 0. With the 
help of Theorems 1, 2, and 10 of Chapter 2 of Foundations, it is easy 
to see that , for each i, (1 ^ i ^ 3 ) , there exists in Q+di an arc PA/ 
from a point P of Q to a point A/ of AiO such that P is the only point 

f Cf. Theorem 41 in Chapter 4 of Foundations. 
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that PA/ y PA{ y and PA/ have in common. Let co, "the point at 
infinity," be a point of D, and for each it (1 ̂ i ^ 3 ) , let PA'tO denote 
PA! plus the interval of AiO from A{ to 0. I t follows from Theorems 
4 and 5 in Chapter 3 of Foundations that the sum of one pair of these 
arcs, say PA[0+PA^0y is a simple closed curve J whose interior I 
contains the internal points of the other arc, PA'20. Since / contains 
no point of Df I contains no point of D. But I contains a boundary 
point A{ of By which is a contradiction. 

THEOREM 8. If D is a complementary domain of a locally compact 
continuous curve ikf, and E is a point of S — Dy then every nondegenerate 
component of the outer boundary of D with respect to E is a simple con
tinuous curve, f 

Theorem 8 follows from Lemma A and Theorems 6 and 7. 

THEOREM 9. If (1) D is a complementary domain of a locally com
pact continuous curve ikf, (2) E is a point of S — Dy (3) C is a component 
of /3, the outer boundary of D with respect to E, and (4) X is a non-end 
point of C, then X is not a limit point of (3 — C. 

PROOF. Let Q denote the component of S — D which contains E\ 
and suppose that the theorem is false. Then there exists an arc 
AiXA2 which contains X as an internal point and a connected open 
subset dx of M containing X but containing neither A nor B. The 
set dx contains a point A% of /3 — C. Let AsO denote an arc in dx ir
reducible from Az to a point O of AiXA2} and let AxO and A20 de
note the intervals of A\XA2 from A\ and A2y respectively, to 0. Let 
du d2y and dz denote three mutually exclusive connected open subsets 
of M containing Au A2l and AZl respectively, but not containing 0. 
With the help of Theorems 1,2, and 10 in Chapter 2 of Foundations, 
it is easy to see that for each i, (1 ^ i ^ 3 ) , there exists an arc PAi 
lying in Q+di which is irreducible from a point P of Q to AiO such 
that P is the only point that PA{ , PA{ , and PA{ have in common. 
For each i, ( l ^ i ^ 3 ) , let PA/0 denote PA/ plus the interval of 
AiO from A/ to 0, and let AiA/ denote the interval of AiO from 4̂»-
to A/. Let co, "the point at infinity," be a point of D. It follows from 
Theorems 4 and 5 in Chapter 3 of Foundations that the sum of one 
pair, say PA[0+PA'30y of the arcs PA[0y PA{0y and PA{0 is a 
simple closed curve J" whose interior I contains the internal points 
of the other arc, PA'20. Since J contains no point of Dy I contains 
no point of D. But A2A2 contains an internal point A2 of PA{ 0 and 

f Cf. Theorem 41 in Chapter 4 of Foundations. 
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contains no point of / . Hence I contains A2, a boundary point of D, 
which is a contradiction. 

THEOREM 10. If D is a complementary domain of a compact con-
tinuous curve and E is a point of S — D, then the outer boundary of D 
with respect to E is either a simple closed curve or the sum of the elements 
of a countable collection G of mutually exclusive arcs and a totally dis
connected closed point set H such that G*H is the set of all end points 
of the arcs of G. 

Theorem 10 follows from Theorems 5, 8, and 9. 

THEOREM 11. If (1) D is a complementary domain of a locally com
pact continuous curve M, (2) Eis a point of S — D, (3) G is a component 
of (3, the outer boundary of D with respect to E, and (4) ]8 and the bound
ary of D are identical, then D plus the non-end points of Cis a connected, 
connected im kleinen, inner limiting set.\ 

PROOF. Let H denote D plus the non-end points of C. Obviously, 
H is a connected inner limiting set and is connected im kleinen at all 
of the points of D. Suppose that X is a non-end point of C. Then 
from Theorems 8 and 9 it is easy to see that there exists a region R 
which contains X but contains neither an end point of C nor any point 
of (3- C. Let T denote the component oi RC which contains X, and 
let Ri denote the component of R—R- (C— T) which contains C. Ob
viously T is a segment, R\ is a domain, and since any point of Ri-H 
may be joined to T by an arc in Ri, Ri-H is a connected subset of R 
which is open with respect to H. Since this is true for any region R 
containing X which contains neither an end point of C nor any point 
of ]8 — C, H is connected im kleinen at X. 

THEOREM 12. If K is the boundary of a complementary domain D 
of a locally compact continuous curve M, ]8 is the outer boundary of D 
with respect to a point E of S—D, and H is a component of K—(3, then 
H is a continuous curve having only one point in /3. % 

PROOF. Let Q denote the component of S—D which contains E. 
Then /3 is the boundary of Q. Evidently H contains at least one point 
of ]8. Suppose that H contains two points, Ai and A2, of j8. Let d\ 
and d2 denote two mutually exclusive connected open subsets of M 
containing Ai and A2, respectively. By Theorems 2 and 10 in Chap
ter 2 of Foundations, H+di+d2 contains an arc TH from A\ to A2. 

f Cf. Theorem 18 in Chapter 3 of Foundations. 
t Cf. Theorem 43 in Chapter 4 of Foundations. 
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By Theorems 1 and 2 in Chapter 2 of Foundations, it follows that 
Q+di+d2 contains an arc TQ irreducible from THdi to Tud^. Then 
TH+TQ contains a simple closed curve J which contains a point X 
of H and a point F of Q but which contains no point of D. Let I 
denote the complementary domain of / which contains no point of D. 
The domain I contains no point of D and consequently no point of j8. 
Hence I+X + F is a connected point set lying in Q since it contains 
a point of Q but no point of 0. But since X is a point of D, this is a 
contradiction. Consequently TI has only one point 0 in j3. Further
more, it is easy to see that H is connected im kleinen; for it is evident 
that H is connected im kleinen at all of its points except possibly 0, 
and if d is any connected open subset of M containing 0, the com
ponents of d — 0 which contain points of H together with 0 form a 
connected open subset of Zf. 

However, despite Theorems 8, 9, and 12, Theorem 11 is false if 
condition (4) is omitted. Speaking roughly, condition (4) may be 
omitted and the theorem remain true if S does not contain both 
"hills" and "holes." 

The reader should note that Theorems 6 to 12 inclusive remain true 
if, instead of postulating that D is a complementary domain of a 
locally compact continuous curve, it is postulated that D is a com
plementary domain of a continuous curve and the boundary of D is 
locally compact. This is quite evident since the property of local com
pactness is not used in any proof other than the proof of Theorem 1. 
Of course, the boundaries of the domains involved must be locally 
compact in order to make the use of Theorem 1 valid. 

T H E UNIVERSITY OF T E X A S 


