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SPIN REPRESENTATION OF INVERSIONSf 

A. H. TAUB 

1. Introduction. The spin representation of the (real or complex) 
orthogonal group in a euclidean space En of n = 2v or 2v-\-\ dimen­
sions may be obtained by setting up a correspondence between the 
lines through a fixed point (the origin) in En and a linear family of 
involutions in a projective space P^-i of 2" — 1 dimensions.f 

Analytically the correspondence is set up by finding n 2 "-dimen­
sional matrices 7* which form a basis for the linear family and which 
satisfy the relation 

(1) J ( 7 V + Y V ) = «"• 1, *, J = 1, * ' ' , n. 

The existence and properties of these matrices and the properties of 
the algebra for which they generate a basis have been discussed in 
detail by R. Brauer and H. Weyl§ and others. The main result which 
will be used here is that to every proper orthogonal transformation 
in En there corresponds a unique collineation (a pencil of 2 "-dimen­
sional matrices) in Pk-i, (k = 2v), which leaves the linear family in­
variant, and conversely. In case n is even, the image in Pk~i of an 
improper orthogonal transformation in En is also a collineation, but 
if n is odd and *>>1, the image of such a transformation in En is a 
correlation in Pk-\. In case n is odd and *> = 1, the image of such a 
transformation in En is an antiprojectivity. The matrix representing 
the orthogonal transformation may be normalized to within a sign; 
that is, the representation is double-valued. 

If 7* are solutions of (1), a/ the coefficients of an orthogonal trans­
formation in En (proper if n is odd but arbitrary if n is even), and A 
the 2 "-dimensional matrix in Pk~i corresponding to a / , then they are 
related by the equations 

(2) a / y = Ay*A~l 

or 

(3) 7* = afA^ytA . 

t Presented to the Society, September 9, 1937. 
t See O. Veblen and J. von Neumann, Geometry of Complex Domains, Princeton 

Mimeographed Notes, 1935-1936. 
§ R. Brauer and H. Weyl, Spinors in n dimensions, American Journal of Mathe­

matics, vol. 57 (1935), pp. 425-449. 
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If we use preferred (cartesian) coordinates in En, then the quantities 
7% a / , and A are all constants. 

In order to describe these results in a general coordinate system 
in En, we note the transformation properties of the ji. Under an arbi­
trary transformation of coordinates in En the n matrices yi transform 
as a contravariant vector, whereas under an arbitrary transformation 
of coordinates in Pk-i they transform as collineations. The term 
"frame of reference" will be used to denote a coordinate system in 
each of the spaces En and P&_i. We note that the frame of reference 
may be changed by changing coordinate systems in either or both 
of the spaces En and P&_i. Under an arbitrary change of reference 
frame the 7* have the transformation law 

dx** 
(4) 7**0*) = r-1(^*)7 i0(^*))^(^*) . 

dxJ 

In order to find the spin image of any transformation x **=ƒ*(#) 
in En, we must solve equations (4) for the matrix T(x) such that the 
matrix 74**(x(x*)) is a solution of the equations 

1 dxl* dx]* 
(5) <y*y* + 7 'V*) = gif* = gkl-rr^7TJ 

2 dxk dxl 

and gkl is the value of the metric tensor En in the general coordi­
nate system described by the coordinates x\ It is evident that if T 
is the image of xi*=fi(x)y and S is the image of #*** = £*(#*), then 
TS is the image of #***== g *(ƒ(#)). 

If an orthogonal transformation in En is applied to a general 
coordinate system (for example, polar coordinates) in which the met­
ric tensor is given by ga(x), then in the new coordinate system 
gv (x*) = ga(x*) - Hence in this case 7**(x*) =yi(x*) are a solution 
of (5), and equation (4) becomes 

d xl* 
(6) 7*'(**) = 7 T-\x*)r(x{x*))T(x*). 

dxJ 

It is evident that equation (6) reduces to (3) when we use cartesian 
coordinates in En. Moreover, in these coordinates the matrices T are 
constant. 

In another paper equation (6) will be used to investigate the spin 
representations of groups of motion of Riemannian spaces. In this 
paper we use equation (4) to obtain the spin representation of the 
inversion in the unit hypersphere in Eni namely, the transformation 

(7) / : x** = x Vr2, 
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where the x* are cartesian coordinates and 

(8) r2 = bijxW. 

The summation convention is used throughout this note, and since 
we use cartesian coordinates, no distinction need be made between co-
variant and con tra variant indices. 

2. The image of / . From equation (7) it follows that 

dx1* 1 / 2x{x3'\ 

dx3 r2 \ 

and hence that 

dx1* 
(9) e*'* = 8kl 

W * dxk 

Therefore the matrices 

(10) 7** = 

r2 ) 

dx3* 1 

dx1 r* 

1 

r2 

are solutions of (5) if y{ are solutions of (1). Equations (4) then be­
come 

(11) 
1 1 / 2xlx3\ 

yi = _ f § i )T-ly3T. 
r2 r2 \ r2 / 

A solution of these equations is given by the matrix 

1 x** 
(12) r = —*>7/ = — 7 < , 

r r* 
as is readily verified by using equations (1). Hence the matrix T given 
by equations (12) is the spin image of the inversion / given by equa­
tions (7). From equation (1) it follows that 

T2 = 1, 

as it must since / is a transformation of period two. This condition 
together with (11) determines the matrix T except for sign. 

If the transformation I is followed by the rotation 

(13) x**l = afx*3 

in En, we obtain the transformation 

(14) x*** = afx*/r* 
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in En. If we first apply (13) and then (7), we obtain the transforma­
tion 

x*1 a/x3' 
/y%%i — . 

Hence the transformation / commutes with any orthogonal trans­
formation in En. Therefore the direct product of the group of two ele­
ments, the identity and / , and the orthogonal group of En forms a 
group G in En. This group is a subgroup of the conformai group in En. 
The dilations and translations which are in the conformai group are 
not in this subgroup. 

We next investigate the spin representation of the group G. If n is 
even and A is the image of an orthogonal transformation in En, and 
if T is the image of / , then A T{x) is the image of the transformation 
(14). This is the same transformation as T(x*)A, where x*i = a,jix3. 
For 

1 1 x** 
ATA-* = — A(xiyl)A~l = —xiajyj = 7i = T(x*). 

r r r* 
In case n is odd, the above discussion gives a spin representation of 
that subgroup of G composed of the direct product of the proper 
orthogonal transformations of En and the group of two elements, the 
identity and I. By adjoining the correlation (or antiprojectivity if 
v — V) in Pk-u which corresponds to an improper orthogonal trans­
formation in Eny to the spin representation of this subgroup of G> we 
obtain the spin representation of G. Thus in both cases we obtain a 
spin representation of all the conformai transformations except dila­
tions and translations. This is a collineation representation in the 
sense that if the 2 "-dimensional matrix P corresponds to a transfor­
mation of G, so does pP, where p is an arbitrary constant different 
from zero. 

3. Dirac equations and inversions. The results of the previous sec­
tion will be applied to the study of the invariance properties of the 
Dirac equations under inversions. The Dirac equations may be writ­
ten as 

/ d e i \ mi 
(15) y'(—. r*n* = ~7~^ = /^> 

Xdx3 c h / h 
where 0,- is the four-dimensional vector potential of the external field, 
e the charge on the electron, m its mass, c the velocity of light, and 
h Planck's constant divided by 2ir. Under the transformation of co-
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ordinates which is given by equations (7), equation (15) becomes 

where 

If we now let 

dx*> dxl 

dxl dxJ* 

* = — (**>7/)** = T**, 

equation (16) becomes 

/ dT fy* e i \ 

W * dx* c k ' J 

or 

/ d e i dT\ 

In virtue of equations (11) this becomes 

1 / d e i dT\ 

f2 W * c h d W 

But 

a r l l 

<?r 1 r l r 

r - 7 = —r [(**7/)7< ~ ***] = — k*(2*„ ~ 7*7/) - ***] 

1 r 
= — [*** - 7<(***7/)J, 

dT 1 3 
7 i j = (yixi* _ 4x**7i) = (*'*7<). 

dxi* r*2 r2 

Hence equation (17) becomes 
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If we now let \[/* = r**\[/'f this equation becomes 

/ d e i \ 

(is) y — r*?W' = -/"Y'. 
\dx3* c h / 

The factor — r2 on the right-hand side of this equation shows that 
the Dirac equation for an electron is not invariant under inversions. 
However, if we set 0? = O and JU = 0, then equation (15) is numerically 
invariant under inversions. This is done in the neutrino theory of 
light. Hence that theory has the same invariance properties as the 
Maxwell theory. Veblenf and DiracJ have both shown that there is 
no nonsingular analog of the Dirac equation which is conformally 
invariant. The result given here shows how the invariance fails. We 
have given the detailed treatment of the behavior of the Dirac equa­
tion under the four-dimensional inversion; the three-dimensional in­
version may be treated by restricting the range of indices in (7), (8), 
and (12) to 1, 2, 3 and adding the equation x4* = x4 to (7). 

UNIVERSITY OF WASHINGTON 

NOTE ON DEGREE OF TRIGONOMETRIC 
AND POLYNOMIAL APPROXIMATION 

TO AN ANALYTIC FUNCTION § 

J. L. WALSH AND W. E. SEWELL 

1. Introduction. Well known results || relate the continuity proper­
ties of a real function ƒ(x) to the degree of approximation to ƒ(x) by 
trigonometric sums and by polynomials in x. In more recent years 
further results If have related the continuity properties of a complex 
function f(z) to the degree of approximation to f(z) by polynomials 
in the complex variable z. The object of the present note is to obtain 
some new results lying on the border line of these two general fields 
of research. 

To be more explicit, if ƒ (z) is analytic in the annulus p > | s | > 1 /p < 1, 
the degree of convergence on \z\ = 1 of the Laurent development of 

t O. Veblen, A conformai wave equation, Proceedings of the National Academy of 
Sciences, vol. 21 (1935), p. 484. 

I P. A. M. Dirac, Wave equations in conformai space, Annals of Mathematics, (2), 
vol. 37 (1936), p. 429. 

§ Presented to the Society, September 6, 1938. 
|i Due especially to S. Bernstein, Jackson, Lebesgue, Montel, and de la Vallée 

Poussin. 
H Due especially to J. Curtiss, Sewell, and Walsh. 


