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ON THE BOUNDARY CONDITION du/dn+au = 0 
FOR HARMONIC FUNCTIONS* 

HILLEL PORITSKY 

1. Introduction. In a recent paper (referred to below as I)f the au­
thor considered the nature of the "reflection" or analytic continuation 
of harmonic functions across a plane over which the boundary condi­
tion 

du 
(1) h au = 0, a — const., 

dn 
applies. In the following this investigation is continued. First, the 
case of a spherical (circular in two dimensions) boundary, over which 
the boundary condition (1) holds is considered. I t is shown that sin­
gularities admit of a similar "reflection," as in the case of a plane in I ; 
thus a point singularity at Po outside a sphere 5 over which (1) holds 
is reflected into a point singularity at Pi (the spherical inverse of Po 
in S) and into a distribution of singularities along the radius vector 
from the center 0 to Pi . 

Returning to plane boundaries, we apply boundary conditions of 
the form (1) over two parallel planes. A rather complicated "reflec­
tion" of singularities results, consisting of point singularities as well 
as of distributed line singularities. The point singularities are located 
at the periodic row of points obtained by reflecting the original singu­
larity Po first in one plane, then in the other one; reflecting these 
images in the two planes; and so forth. The line singularities are dis­
tributed over the straight line through the above point singularities. 
The density of the distributed line singularities is an analytic function 
of the distance along the line bearing them between the point singu­
larities, but changes abruptly from one analytic function to another 
one in crossing these points. 

Some of the above features are believed to be typical of analytic 
continuations of a great variety of expansions in characteristic func­
tions related to two point problems. 

2. Circular and spherical boundaries. We shall consider the ques­
tion of reflections of singularities of harmonic functions across spheri­
cal or circular boundaries corresponding to the condition (1). 

* Presented to the Society, September 5, 1934. 
t This Bulletin, vol. 43 (1937), pp. 873-885. 
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First we consider the two-dimensional harmonic case. Suppose that 
the function u satisfies 

du 
(2) au = 0, f or r = 1, 

dr 
and is harmonic outside of this circle except near a point PQ where it 
becomes infinite like — lnr0; u is also to vanish at infinity. The point 
PQ is along the x axis a t x = h = eH>l. In terms of (two-dimensional) 
potential theory language, the singularity of u a t P 0 is that of a "unit 
point charge." 

The determination of u and its analytic continuation may be car­
ried out by reducing it to the case considered in I by the application 
of the conformai transformation 

(3) z = ez, Z = X+iY, z = x+iy. 

This straightens out the boundary r = 1 by transforming it into the 
line X = 0; the boundary condition (2) is preserved, while the unit 
point charge at z = eH is carried into unit point charges at 

(4) Z = In* = H + 2nri. 

Proceeding as in I, §5, we find that each one of the periodic array 
of point charges is "reflected" into a point charge and an exponential 
trail of negative charges. When we change back to the z plane, there 
results a positive image at z = 1/h and a distributed charge density 

(5) p(x) = - 2ahaxa-\ for 0 < x < h. 

In determining the latter, it is to be kept in mind that charge is pre­
served under conformai transformations, so that p(x) is found from 
p(x)dx = P(X)dX, where P{X) is the charge density along the X axis 
in the Z plane. From I, equation (23), P(X) = -2ae<h+x\ îorx<-h. 

As in I, the restriction I, (9), is pertinent. The total amount of 
charge then vanishes so that u vanishes at infinity like Od^l"-1). 

Proceeding to the three-dimensional case and a spherical boundary 
along which (2) holds, we can no longer utilize conformai transforma­
tions but proceed as follows. 

In order to determine the function u which is harmonic except near 
Po'(x, yy z) = (h, 0, 0), (*>1), where u becomes infinite like l/r0 (the 
reciprocal distance from P0) while along the unit sphere r = 1 it satis­
fies the boundary condition (2), start with the expansion 

00 

(6) u = £ A„ri*+»Pn (cos 0) + 1/ro, 
n«0 
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for u, (r ^ 1), and utilize the familiar expansions 

(7) h-Uzâ™""* or s£'-(~4 
according as r is less than or greater than h, where 0 is the angle with 
the x axis and Pn are the Legendre polynomials. If (2) is imposed, 

1 (1 + 2d) 
(8) An = hn+l (n + a + l)hn+1 

The first part of An leads to a point charge of amount 1/h at Pi , the 
spherical inverse point of P 0 ; the latter leads to a distributed charge 
density p(x) along the line from the center to Pi , provided p(x) satis­
fies the moment equations 

C llh (1 + 2a) 
(9) p{x'){x'Ydx' = j n = 0, 1, 2, • • • . 
W J o (n + a+ l)A»+i 
The solution of these equations is given by 

(1 + 2a) xa 

(10) p(x) = 
ha 

Magnification can be used for treating the case where (2) holds 
along a sphere of non-unit radius, while singularities inside the circle 
or sphere can be reduced to outer singularities by means of inversion. 

The two-dimensional case can also be treated in a similar fashion 
with Fourier series replacing the series of Legendre polynomials. 

3. Boundary conditions along two parallel planes. We consider in 
this section continuations of harmonic functions across two parallel 
planes x = 0, x = C, corresponding to boundary conditions of the form 
(I) on each plane, though for simplicity we suppose that (1) applies 
along x = 0. Then 

du 
(II) au = 0, for x = 0, 

dx 
du 

(12) — = 0, for x = C. 
dx 

We shall investigate the reflections of a point charge singularity lo­
cated at P 0 : (h> 0, 0) between the planes x = 0f x = C, (0<h<C). 

One way of obtaining the singularities of the analytic continuation 
is to apply the familiar method of successive reflections, attending 



446 HILLEL PORITSKY [June 

alternately first to x = 0, then to x = C. There result point charges 
along the x axis at 

(13) x = ± h ± 2nC, n = 0, ± 1, ± 2, • • • , 

as well as proper continuous charge distributions which change ab­
ruptly to different analytic functions on crossing the points (13). 
This process of reflection gets rather irksome after several stages. 

We shall first follow these reflections by means of the operational 
treatment employed in I, §8. If SQ(X — h) is the original charge a t 
x = hy reflection across x = C leads to the new charge S0(x — 2C+h). 
As shown in I, §8, analytic continuation across x = 0 results in multi­
plication by the operator (p+a)/(p — a), in addition to replacement 
of the argument by its negative. This introduces the charges 

(14) [So(x + h) + So(x + 2C - * ) ] . 
p — a 

Further reflection in x = C replaces x by 2C — x, changes f(p) to 
—f( — p)y and results in the charges 

(15) ^ — - [So(x - 2C - h) + So(x - 4C + A)]. 
a + p 

Following this by a reflection in x = 0 we would apparently have 

p + a a — p _ 
[So(x +2C+ h)+ So(x + AC - h)] 

(16) p — a a + p 
= - [SQ(x + 2C + h) + So(x + 4C - h)]. 

This, however, may be shown to be incorrect. The explanation of the 
difficulties thus encountered by the operational treatment will appear 
presently. 

We shall give a Bessel-Fourier integral representation for u. Utiliz­
ing I, equation (16), we put 

/» 00 

(17) u = I /o(Xp) [e-xl*-»l + /(X)ex* + g(X)r*»]<*X, 
Jo 

where/(X), g(\) a r e to be determined. Imposing the conditions (11), 
(12) on the integrand and solving, say for ƒ(#), we obtain 

(18) 
e2\C 

X — a 

X + u 
e+\h 1_ 

X — a 
\ + a 

e2\C _ _ _ _ _ _ 

e-\h 

- 1 



1938] HARMONIC FUNCTIONS 447 

Expanding/(X) in powers of e~2XCf(X —a)/(X+a) one obtains 

* /X - a\n A A - a\n+1 

(19) /(X) = ex(»-20 £ ( ) e~^nC + e~™ £ ( ) ^"2XwC, 
n=o \X + a/ n==o \X + a) 

and the substitution of (19) in the middle term of (17) results in the 
potential function 

(20) 

A f °° A - a\n 

E ( ) e X ^ -2<n+l )C] / o ( X p y X 

n=o Jo \X + a) 

+ S ( ) eX(*-^2nC)/o(Xp)JX. 
ns=0 J o \X + a/ 

To interpret (20) as the potential of charges, note that from I, 
equation (16), it follows that a charge distribution c{x) over the posi­
tive x axis gives rise to the potential 

/% 00 

(21) I f(\)e^JQ(\p)d\, x < 0, 
J o 

where 

c(x)e-**dx. 
o 

Thus, if ƒ(X) is given (say by means of (18) or (19)), one obtains for 
c(x) a Laplace-Carson integral equation. The solution of the latter 
can be effected by means of a Bromwich integral ; in operational no­
tation the solution appears in the form 

(23) c(x) =f(p)SQ(x). 

The explicit charge corresponding to the displayed term in the first 
series in (20) is thus 

(p - a\n 

\p + aj 
(24) ( ) « P M ( ^ ) % ( a ; ) , 

\p + a) 
The effect of the exponential is to translate the distribution a distance 
2(n + l)C — hin the direction of positive x; there remains to interpret 

(p - a\n / 2a V 
(25) ( - — ) So(x) = ( 1 - — — ) So(x). 

\p + a J \ p + a/ 

This is done by expanding by the binomial theorem and replacing 
(p+a)~kSo(x) by xk-le-a*/(k-l)l, for * > 0 , and by 0 for x<0. Of 
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course, the first term in the expansion of the right-hand side of (25) 
leads to a unit point charge at # = 0. I t follows that (24) represents a 
point charge atx = 2(n + l)C—h and a continuous charge beyond this 
point of charge density Pn{x)e~otx, where Pn{x) is a polynomial of 
degree n. 

As regards the function g(X) and the last integral in (17), a similar 
treatment is possible resulting in an interpretation in terms of charges 
along the negative x axis. The latter might be described essentially 
as the positive image of the charges for x > C in the plane x = C. How­
ever, in place of (22) an integral equation of the form 

(26) g(X) = I d(x)e*xdx 
J -oo 

now obtains for the charge density cx{x) along x<0. A Bromwich in­
tegral will not yield the solution of this equation unless one changes 
the independent variable to — x or properly changes the path of in­
tegration. 

An operational solution of (26) (similar to the solution (23) of (22)) 
could therefore be given only by using a non-orthodox interpretation 
of the operator g(p). Essentially the same situation appeared in I, 
where, in equation (42), 1 /(p — a)S0(x) was interpreted as — eaxHo( — x) 
rather than eaxHo(x), as is usually done in operational calculus* (see 
also I, footnote, p. 884). This also accounts for the difficulties en­
countered in connection with (16) and the attempted operational 
treatment of the successive reflections (two distinct (and mutually 
inconsistent) interpretations of the operators l/(p — a), l/(p+a) oc­
curring in (15), (16) have to be employed).! 

A very similar treatment can be given for the case wherein general 
linear conditions of the form (11) apply along both x = 0 and x = C. 

We believe that some of the features of the above analytic continu­
ation are characteristic of general differential systems with two point 
boundary conditions. I t is planned to touch upon this phase in the 
future. 

GENERAL ELECTRIC C O . 

SCHENECTADY, N. Y. 

* Both interpretations yield the Green's function of the differential equation 
(d/dx — <*)w = 0 with discontinuity at x — 0f the one relative to the boundary condition 
w ( + o o ) = 0 , the other relative to u{— oo)=0. 

f Roughly speaking, the operational method fails here because of its catering to 
functions which vanish for sufficiently negative x. It can handle the charges for x>0. 
Properly modified (as in I, §8) it can handle the charges for x<0. It is not adapted, 
however, to treating both sets of charges and exhibiting their relations. 


