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If one weakens the requirements still further and only asks that a 
square be magic in the rows and columns, then a pair of antipodal 
elements can add up to 17 without the square being diabolic. This is 
illustrated by 
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which is magic in rows and columns, but not in diagonals, and which 
has a+k = e+o = 17. 

An analogous treatment of the problem of finding all diabolic magic 
squares is given by Kraitchik on page 167 of his book, La Mathé
matique des Jeux, where he shows that all diabolic magic squares can 
be derived by successive applications of A, B, C, and D from three 
particular ones which he gives. 
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A NOTE ON REGULAR BANACH SPACES* 
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Introduction. For an element x of a Banach space J50t it 'ls w eU 
known that the functional 

XJJ) = ƒ(*) 

defined over Bi = B0, the Banach space composed of all linear func-
tionals (real-valued additive and continuous functions) defined over 
B0, is linear; moreover $ 

IWk = IMk; 
hence the additive operation Xx = T(x) from B0 to B2=Tïx is continu
ous and norm-preserving. In B2 let 52

(0) denote the set of image ele-

* Presented to the Society, October 30, 1937. 
t S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 53. We shall use 

Banach's terminology. 
t Banach, loc. cit., pp. 188-189. 
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ments of T. A space B0 is regular* if and only if 

(0.1) B2 = £2
(0) . 

Examples of such spaces are Lp
f lp, (Kp< oo ), and the hyper-Hilbert 

spaces. 
The purpose of the present note is to list in §1 some conditions 

necessary and sufficient for regularity, to give the form of the general 
linear operation from a regular space to the space I1 of absolutely 
convergent series (§2), and to generalize some theorems already 
known concerning the differentiability of functions of bounded varia
tion defined to a Banach space (§3). A function Y(R), from the ele
mentary figures in a euclidean figure Ro to a B space, is of bounded 
variation, or BV, if and only if 2 J ? - I | | ^ C ^ ) | | *S bounded over all finite 
sets of non-overlapping elementary figures R\y • •, RK contained in 
R0. The l.u.b. of such sums will be denoted by va r (F ; R0). The last 
section includes the result (Theorem 7), analogous to that of J. A. 
Clarkson for uniformly convex spaces and those of Dunford and 
Morse,f that every function BV, from a linear interval to a regular 
12-space, is strongly differentiate e J a.e. (almost everywhere).! 

1. Necessary and sufficient conditions for regularity. We prove the 
following theorem : 

THEOREM 1. Each of the following conditions is necessary and suffi-
dent that B0 be regular: 

(1.1) Bi is regular; 
(1.2) for linear sets in B2 closure is equivalent to regular closure; 
(1.3) B0 is weakly complete, and f or linear sets in B2 regular closure 

is equivalent to weak closure as a set of functionals over B\; 
(1.4) B2

(0) is of the second category in B2 ; 
(1.5) each linear functional over B2

(0) is uniquely extensible over the 
whole of B2. 

(0.1) implies (1.1). The operation ƒ F= T(F)> adjoint (or associate) 

* H. Hahn, Über lineare Gleichungssystème in linearen Riïumen, Journal für die 
Reine und Angewandte Mathematik, vol. 157 (1927), pp. 214-229. 

t J. A. Clarkson, Uniformly convex spaces, Transactions of this Society, vol. 40 
(1936), pp. 396-414; N. Dunford and A. P. Morse, Remarks on the preceding paper of 
James A. Clarkson, ibid., pp. 415-420. 

t The definition of strong and weak differentiability will be given in §3. 
§ See also Gelfand, Zur Theorie abstrakter Funktionen, Comptes Rendus de 

l'Académie des Sciences de l 'URSS, vol. 17 (1937), Theorem 3. This theorem of Gel
fand's was called to the writer's attention after the present paper had been accepted 
for publication. 
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to T and from Bz = B2 to Bu assigns to each F(X) the functional 
JF{OC) defined by 

hence for every Xx in 52
(0) 

F(XX) = ƒ,(*) = Xx(fF). 

Since B2
(0) = B2l this implies for every F in Bz an fP in B\ such that 

F(X) =X(JF) for all X in B2; thus Bi is regular. 
(1.1) implies (1.2). If M is a closed linear set in B2, then for X0 

not in M there exists an j ^ in Bz such that F0(X0) = 1, and ^o(-X') = 0 
for X in Af. Since I?i is regular, there is an / 0 in Bx such that F0(X) 
= X(f0) for all X in B2. Hence Z0(/0) = 1, X(/0) = 0 for X in ikf, and Af 
is a regularly closed set of functional over B\. 

(1.2) implies (1.3). In general, regular closure implies weak closure 
as a set of functionals, and this, in turn, is stronger than ordinary 
closure. From (1.2) we then have closure, weak closure as a set of 
functionals, and regular closure, all equivalent for linear sets in B2. 
Moreover, the closed linear subspace B2

W is therefore weakly closed 
as a set of functionals over Bx\ hence B0 is weakly complete. 

(1.3) implies (0.1). From the weak completeness of B0 i t follows 
easily that i?2

(0) is weakly closed as a set of functionals. From the re
mainder of (1.3) the linear set J32

(0) is regularly closed. Hence if there 
existed an X0 in B2 that was not in J52

(0), there would then be an ƒ o 
such that Xo(/o) = 1, while X(f0) = 0 for all X in £2

(0 ) . But then we 
would have fo(x) = 0 for all x in B0l tha t is, f0 would be the identically 
zero functional over B0, contrary to X0(f0) = 1. 

Tha t (1.4) is equivalent to (0.1) follows from the fact that the set 
of image points of a linear operation from one Banach space to an
other is either of the first category in the contradomain space of the 
operation or consists of the whole of that space. 

If B2 contains an X0 not in BéQ), then, since 52
(0) is linear and 

closed, there is an F0 in Bz such that F0(X0) = 1, and F0(X) = 0 for 
X in B2

i0). Thus the zero functional over I?2
(0) is extensible in at least 

two different ways, which contradicts (1.5). 

THEOREM 2. If Bois separable, then each of the following conditions is 
necessary and sufficient that B0 be regular: 

(1.6)* Bo is weakly complete and weakly compact; 

* (1.6) is well known; for the sufficiency see Banach, loc. cit., p. 189, and for the 
necessity, T. H. Hildebrandt, Linear Junctional transformations in general spaces, this 
Bulletin, vol. 37 (1931), p. 200. 
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(1.7) BQ is weakly complete and Bx is separable-, 
(1.8) in Bi weak convergence as a set of junctionals is equivalent to 

weak convergence to an element as a set of elements. 

If BQ is separable, so is B2
(0) ; hence if B0 is in addition regular, then 

B2, and therefore Bx, are separable. Thus from (1.3) the regularity 
and separability of B0 together imply (1.7). 

Condition (1.6) follows from (1.7). If {xn} is a bounded sequence 
in Bo, then, by diagonalizing, a subsequence {xn' } can be found such 
that limnfi(xn') exists for every/^ in a denumerable set dense in Bx. 
The bounded sequence {xn' } is then weakly convergent in J50. 

Thus if Bo is separable, conditions (0.1), (1.6), and (1.7) are all 
equivalent. 

The necessity of (1.8) is clear. If limnfn(x) exists for every x, then 
foix) =limnfn(x) is a linear functional over B0, and if Bo is regular, 
then F(fn) converges to F(f0) for every F in B2. If (1.8) holds and F(J) 
is linear over Bx, then the convergence of {fn} t o / 0 , as a sequence of 
functionals over B0, implies lim F(Jn) = F(f0) ; hence F(J) is weakly 
continuous over Bx. Since Bo is separable, this insures the inclusion of 
^in^2

( 0 ) . t 
THEOREM 3. If Bo is regular, so is every closed linear subs pace Bo'. 

Suppose X'{f) is a linear functional over the space B{ conjugate 
to BQ . Define X(J) =Xf(f), where ƒ varies over Bx, and ƒ is the linear 
functional over Bo determined b y / . Since BQ is regular, there exists 
an x in Bo such that X(f) =f(x) for every ƒ in Bx. We have only to 
show that x is in BQ\ for then 

X'(f) = X(f) = f{x) = f{x) 
for all ƒ and hence for all ƒ ' , since any ƒ can be extended to form a n / . 
If x is not in the closed linear subset BQ of BQ, there exists a n / * in Bx 

such that ƒ*(*) 5*0, ƒ*(*') = 0 for all x' in B{. But then X(j*) =ƒ*(*) 
5*0, while X(J*) =X ' ( /* ' ) =Z'<0) = 0 , a contradiction that completes 
the proof. 

If 2?o is regular, then any separable closed linear subspace is also 
regular and is therefore weakly complete and weakly compact. The 
space B0 must then have these two properties also. This gives us the 
following corollary : 

COROLLARY. A regular space is weakly complete and weakly compact. 

2. Operations from a regular space to the space I1. We prove the 
following theorem: 

f Banach, loc. cit., p. 131. 
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THEOREM 4. If B0 is regular and the operation 

T(f) = {ƒ*} 

from Bi to I1 (space of absolutely convergent series) is linear, then T is 
completely continuous and is defined by a series ]Ci°xn, unconditionally 
convergent^ in Bo) conversely, such a series defines a linear completely 
continuous operation from B\toll. The norm ofTisX.wh. ii/ii-i^Cf \f(xn) | . 

Given a linear T, let F = T(yn) be the adjoint linear operation from 
I1 = r ° , the space of bounded sequences, to B^ If Fi = T(mi), where mi 
is the linear functional over ll defined by the sequence having 1 in 
the ith place and O's elsewhere, then 

Ft(J) =mi(T(f)) -*»,({ƒ>}) = / \ 

Since B0 is regular, there exists an Xi such that 

f = Fiif) = ƒ(*<) 

for all ƒ in Bx. Hence 

(2.1) r ( / ) -{ƒ(*<)}• 

From the weak completeness of B0 and the fact that ]C*^i I f(x*) I < °° 
for all ƒ, the series X^* i s unconditionally convergent;J moreover, 
given e > 0 there is an N€ such that§ 

oo 

(2.2) E I/(*<)| < * 

for all ƒ with ||/|| ^ 2 . If \\f%*\\ ^ 1, then by diagonalizing we can find a 
subsequence {fi} such that lim;/;(:x;w) exists for every n. This fact, 
combined with (2.2), gives 

oo 

E I ƒ*•(*») - ƒƒ(*») I < 2e 

for i, 7 greater than a suitably chosen i£€. Thus T(J) is completely 
continuous. 

Conversely, suppose ^2xn converges unconditionally in B0. The op
eration T(f) in (2.1) is then defined and additive from Bx to ll. Since 

f A series is unconditionally convergent if every reordering is convergent; 
W. Orlicz, Beitrage zur Theorie der Orthogonalentwicklungen, II , Studia Mathematica, 
vol. 1 (1929), pp. 241-255; p. 242. For a statement of equivalent definitions see 
Banach, loc. cit., p. 240. 

t Orlicz, loc. cit., Theorem 2. 
§ Orlicz, loc. cit., p. 246. 
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it is the "pointwise" limit of the linear operations 

(2.3) Tn(f) = {/(*i), • • • ,ƒ(*„), 0, 0, • • • }, n = 1, 2, • • • , 

T must also be linear. The complete continuity follows from the first 
part of the proof. 

The statement concerning the norm of T is an immediate conse
quence of (2.1). 

Without resorting to (2.2) the complete continuity of T could have 
been proved by using the following facts: (i) T is linear, (ii) B\ is 
weakly complete and weakly compact, (iii) the property of converg
ing weakly to an element is preserved under linear operations, (iv) in 
ll weak and strong convergence are equivalent. 

In view of (1.1), Theorem 4 can be stated as follows: 

THEOREM 4'. If BQ is regular, an operation 

from Bo to ll is linear if and only if it is defined by an unconditionally 
convergent series XI ft in B\. If it is linear, it is completely continuous and 

| | r | | =Lu.b.£ | ƒ,(*)!. 
11*11-1 1 

It is clear from the forms of their general linear functionals that the 
spaces Lp, lv, (1 <p< oo), are regular. Applying Theorem 4' and (2.2) 
to these spaces we obtain the following corollary : 

COROLLARY, f An operation T(x) from Lp (lp), (1 <p< oo), to ll is 
linear if and only if there exists in Lv' (lp')y {p' =p/p— 1), a sequence 
hi) = hi(s)} (hi) = { h**} }) such that 

(1) 22\ I y%(s)x(s)ds < oo 2 L ysx1] < °° ) 
*=*1 I J 0 I \ 1=1 I j-1 I / 

for every x=x{s) {x— {xJ'}) in Lp (lp); that is, X i ^ * converges uncondi
tionally in Lp' {lp'), and 

(2) T(x) = | J o yi(s)x(s)ds\ (T(X) = | X yi*x\y 

If T is linear, then 

t In this corollary the case lp to I1 is already known. See H. R. Pitt, A note on 
bilinear forms, Journal of the London Mathematical Society, vol. 11 (1936), pp. 174— 
180; and L. W. Cohen and N. Dunford, Transformations on sequence spaces, Duke 
Mathematical Journal, vol. 3 (1937), pp. 689-701. 
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(i) T is completely continuous] 
(ii) given e > 0 there exists an Ne such that 

< € 

/ oo I oo I \ 

( E Ey^ ' < € ) 
oo ! /» 1 I 

uniformly for all x with 

f)*(s)\'d,si ( t l* ' l ' s : i ) ; 

(iii) ||r|| = l.u.b. £ f y<(s)*(*)d* 

(||r||= Lu.b. z l z ^ v l ) . 

3. Differentiation in regular spaces. In this section we consider the 
differentiability of functions BV from a linear interval to a regular 
space. Our main purpose is to prove the theorem stated in the intro
duction. Every such function is strongly differentiable a.e. A function 
Y(R), from the elementary figures in a euclidean figure Ro to a 
Banach space B0t is said to be strongly differentiable at a point s in 
the interior of R0 if there exists an element y(s) of B0 such that for 
cubes i" lying in R0 and containing 5 it is true that || Y(I)/\ l\ — y{s)\\ 
tends to 0 with 11\, the measure of I. The function Y(R) is weakly 
differentiable a t s if there exists a y(s) such that 

lim 
|ZM> ' 

f(Y(I)/I) - f(y(s)) | = 0 

for every linear functional/. 

THEOREM 5. If Y(R) is defined and B V from the figures in a euclidean 
figure Ro to a Banach space B0, and if Y(R) is weakly differentiable a.e. 
in Ro to the f unction y(s)y then y{s) is Bochner integrable.* 

Let Jo be a cube containing R0, and {lln} a sequence of partitions 
of IQ into a finite number of non-overlapping (except on their bound
aries) and non-degenerate subcubes, with IIn+i a repartition of IIn and 
lim^oo norm Hn = 0. If s lies in the interior of a cube I{n of Un and Ro 
contains /»w, then define yn(s) as Y(Iin)/\ 7»-n| ; otherwise let yn(s) van
ish. Then a.e. in R0 we have {yn(s)} converging weakly to y(s), hence 

* S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vektor-
râumes sind, Fundamenta Mathematicae, vol. 20 (1933), pp. 262-276. 
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||y(*)|| ^ liminf ||y.(*)|| 
n 

a.e. in R0. From Fatou's lemma and the inequality 

f \\yn(s)\\ds^ var(F;i?o) < «o , 
J R0 

the real-valued lim inf„||;yn(s)|| must be summable. The abstract func
tion y(s) is measurable in the sense of Bochner,* since a.e. in RQ it is a 
weak derivative.f Hence ||y(^)|| is measurable and summable, which 
implies that the measurable y(s) is Bochner integrable. 

COROLLARY. $ If, in addition to the assumptions in Theorem 5, Y(R) 
is additive and A C {absolutely continuous), then 

(A) Y(R) = f y(s)ds, 

and Y{R) is strongly differentiable ax. to the f unction y(s). 

In view of the strong differentiability a.e. of the Bochner integral,! 
it is sufficient to prove (A). Let Z(R) =fRy(s)ds; then|| f(Z(R)) 
=fRf(y(s))ds for every ƒ in Bl=B0 and every i? in R0. But f(Y(R)) is 
a real-valued additive and AC function that is differentiable a.e. to 
f(y(s)), and hence f(Y(R))=fB(d/dsf(Y(R)))ds=fRf(y(s))ds for 
every ƒ and R. Thus Y(R) =Z(R) for every R. 

Because of this corollary a theorem of Dunford and Morsel may 
be altered to read : 

THEOREM 6. A Banach space B0 has the property (DBV), namely, 
that every B V f unction from a linear interval to B0 is strongly differenti
able a.e., and its derivative is Bochner integrable, if and only if every 
Lipschitzian function from a linear interval to B0 is weakly differenti
able a.e. 

THEOREM 7. If B0 is regular, then B0 has property (DBV). 

* Bochner, loc. cit., p. 263. 
t See On integration in vector spaces, a paper by the present author which is to ap

pear in the Transactions of this Society. 
% Theorem 5 and the corollary are generalizations of theorems due to Clarkson, 

loc. cit., pp. 409-410. 
§ Bochner, loc. cit., p. 269. 
|| N. Dunford, Integration and linear operations, Transactions of this Society, vol. 

40 (1936), pp. 474-494; p. 475, Theorem 2.3. 
If Loc. cit., p. 415. 
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Suppose Y(i) is defined and Lipschitzian from a linear interval 
[a, b] to a regular space Bo. From the Lipschitzian property it is 
clear that every value of Y{t) lies in the separable closed linear sub-
space BÓ generated by the values of Y(t) at the rationals. By (1.7) 
and Theorem 3 there exists a denumerable set {ƒ/ } dense in the space 
B-l adjoint to Bd ; and Bo is weakly complete. Let Y(R) be the addi
tive figure function determined by Y{t). Then ƒ/ (Y(R)) is a real-
valued additive Lipschitzian figure function; hence there exists in 
[a, b] a measurable set 5 with \S\ — b — a and such that s in S im
p l i e s / / (Y(R)) differentiable at s for each i. Thus if s is in 5, and if 
{In} are intervals closing down on s> it follows that 

| / » | n \ \ln\ ) 

exists for every ƒ' in a set dense in B{ ; moveover, by the Lipschitzian 
property || Y(In)/\ In\ || ^K. These two conditions imply that 
lim ƒ'( Y(In)/1 In | ) exists for every ƒ in B(, that is, { Y(In)/\ln\ } 
is a weakly convergent sequence. Since Bd is weakly complete there 
is an element y(s) to which this sequence converges weakly. If {In} is 
another sequence of intervals closing down on s, then { F ( / n ) / | / n | } 
is also weakly convergent, and for every ƒ' 

lim f(Y(In)/ | In | ) = Hm ƒ (F( / n ) / | Jn | ) = ƒ(?(*)). 

Thus Y(R), as a function defined to Bd, is weakly differentiable 
a.e. in [a, &]. Since any ƒ in J5X defines an ƒ in B{ , Y(R), as defined to 
J50, has the same property. On application of Theorem 6, the proof is 
complete. 

If L denotes the space of functions Lebesgue integrable on [0, 1 ], 
we have the following corollary: 

COROLLARY. If B0 is regular, then r(<£) from L to B0 is linear if and 
only if there exists an essentially bounded and Bochner measurable f unc
tion x(s) on [0, 1 ] to Bo such that 

T(<l>) = I x(s)<l>(s)ds, 
J o 

the integration being in the Bochner sense. The norm of T is ess.5 sup. 
\\x(s)\\. 

To obtain this from the theorem the reader is referred to a proof 
by Dunford.* 

THE UNIVERSITY OF VIRGINIA 

* Loc. cit., p. 483, Theorem 5.3. 


