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'a + lb + 5c + K W /a-b + Sc- 5d\* 
P 

(4 )* 

(a + 2b + 5c + lOdy (a - b + 5c - 5d\2 

• ( ~6 ) + 2 ( i ) 
(a + lb - c - 2d\2 /a - b - c + d\2 

+ 5 ( ; ) + 1 0 ( — g — ) • 
In view of (2) and (3), the numerators in (4) are all even. Then, 

unless exactly three of a, b, c, d are divisible by 3, we can choose 
signs for a, b, c, d'so that 

(5) a - b - c + d = 0 (mod 3). 

Then all the other numerators in (4) are divisible by 3. 
In the exceptional case either a and b or c and d are divisible by 3. 

But the identity 

(6) 9(A2 + 2B2) = {A ± 4£)2 + 2{2A + B)2 

(repeated if necessary) shows that any multiple of 3 of the form 
x2-\-2y2 can be expressed in that form with x, y prime to 3. Then (5) 
can be verified as above, and q = 1. We have now proved the following 
theorem : 

THEOREM 4. Every positive integer is representable in the form 

a2 + 2b2 + 5c2 + Wd2. 
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A MOMENT-GENERATING FUNCTION WHICH IS USEFUL 
IN SOLVING CERTAIN MATCHING PROBLEMS f 

EDWIN G. OLDS 

1. Introduction. In a book published several years ago, Fry J de
voted considerable attention to various aspects of a problem which 
he called, "the psychic research problem." His introductory problem 
is the following: "A spiritualistic medium claims to be able to tell the 

* Formula (4) and the rest of the proof of this theorem were suggested by 
Gordon Pall. 

t Presented to the Society and The Insti tute of Mathematical Statistics, Decem
ber 30, 1937. 

% T . C. Fry, Probability and Its Engineering Uses, Van Nostrand, New York, 1928, 
pp. 41-77. 
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color of a playing card without seeing it. In order to test her claims 
an experiment is conducted with four red and four black cards. These 
cards are thoroughly shuffled and placed face down on the table. The 
medium is told that there are four red and four black cards, but pre
sumably knows nothing as to their arrangement. The experimenter 
picks up a card and, without either looking at it himself or showing 
it to the medium, asks its color. If she answers 'red,' he places it at 
one side of the table. If she answers 'black,' he places it on the other 
side of the table. This process is repeated until all cards are exhausted. 
If the medium does not have the ability which she claims to possess, 
what is the chance that there will be just one black card in the pile 
that should be red?" 

Fry solves this problem by considering the number of chance orders 
of red and black which would match the order in which the medium 
calls the cards to the extent of producing exactly three red pairs. He 
also proposes and solves various other problems of this general type. 
A problem like Fry's, but concerned with tea-tasting, is thoroughly 
discussed by Fisher.* 

Chapman f in 1931, contributed the solutions of several problems 
related to the expected number of correct matchings if a deck of / 
different cards is placed in correspondence with a given target deck 
of the same kind. One of his results is the function 

1 r 1 1 1 1 1 
1 w s! LO! 1! 2! V } {t-s)\\ 

which gives the probability of s correct matchings. 
A more general problem has been considered by Greenwood.J He 

considers matching a target deck containing t sets of identical cards, 
with Si cards in the ith. set, (i = 1, 2, • • • , t). For the case where the 
number of cards is the same for each set, he obtains the mean and 
variance of the distribution of the numbers of correct matchings as s 
and s2(t—l)/(st—l), respectively. The purpose of the present paper 
is to develop a moment-generating function and derive the first four 
moments for the theoretical distribution of numbers of correct match r 

* R. A. Fisher, The Design of Experiments, Oliver and Boyd, Edinburgh, 1935, 
chap. 2. 

f D. W. Chapman, The statistics of the method of correct matchings, American 
Journal of Psychology, vol. 46 (1934), pp. 287-298. 

| J. A. Greenwood, Variance of a general matching problem, Annals of Mathe
matical Statistics, vol. 9 (1938), pp. 56-59. See also M. S. Bartlett, Properties of 
sufficiency and statistical tests, Proceedings of the Royal Society, (A), vol. 160, pp. 
268-282 (note especially the discussion of the iXm contingency table, pp. 278-280). 



1938] A MOMENT-GENERATING FUNCTION 409 

ings for this case where the number of cards is the same for each set.* 

2. Discussion of Fry's problem. Before taking up the general case 
of / sets of s cards each, let us consider a solution of Fry's problem, 
which we quoted above. 

Suppose the cards are tagged Ri, R2, Rzy R±, Bi> B2y B$, B±. Let us 
consider the order in which the medium calls the cards as constituting 
the order in which a target deck is laid out. When the deck used for 
matching is laid out in correspondence to the target deck, any of 
the cards of the matching deck may fall below any one of the cards of 
the target deck. This is illustrated in the array below, where the col
umns correspond to the cards of the target deck and the entries in 
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Array I Array II 

the columns correspond to the cards of the matching deck. Now, 
whenever Ri appears in a column labeled 2?i, R2, Rz, or R±, this repre
sents a matched pair; and likewise other reds in the red columns and 
the blacks in the black columns represent matched pairs. In every 
such case let us replace the symbol by x, and in all other cases by 1. 
In this way we form the second array. 

Now, if we make all possible choices of one element from each 
column of the first array, with no two from any row, we have all of 
the 8! orders in which the cards of the matching deck may appear. 
Let us suppose that one of these is RIR2B\BZRZRAB2B^ This corre
sponds to x, x, 1, 1, 1, 1, xy x in the second array, or, if we drop the 

* T. E. Sterne, The solution of a problem in probability, Science, vol. 86, pp. 500-
501, has calculated the first four moments for the case s = 5,t = 5; also note numerical 
results given by E. V. Huntington, Exact probabilities in certain card-matching prob
lems, Science, vol. 86, pp. 499-500; and results given by C. E. Kellogg, New evidence^) 
for extra-sensory perception, Scientific Monthly, vol. 45 (1937), pp. 331-341. 
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commas and multiply, it corresponds to x4, where the exponent indi
cates that we have exactly four matched pairs. Forming every possi
ble product from the second array, using only one element from each 
column and no two from any row, we have 8! terms of various de
grees. Collecting like powers we have 

4>(x) = (4!) V + 16(4!)2*6 + 36(4!)V + 16(4!)2*2 + (4!)2, 

which means that , of all the possible arrangements, (4!)2 produce 
eight matched pairs, 16(4!)2 produce six matched pairs, for example. 
If we divide the coefficients by 8! we have the probabilities. Thus 
Fry's problem, which requires the probability for six matched pairs, 
has the answer 16(4!)2/8! or 8/35. 

If we denote by ƒ (r) the frequency of r matched pairs, we may write 
the above polynomial in the form 

8 

Then, obviously, cf>(x)/Sl is a generating function for factorial mo
ments. Denoting the factorial moments by Ky where 

Ki = , if r » = r(r - 1) • • • (r - * + 1), 
8! 

we have 

K» = * ( l ) /8 ! , i d = 4 > W 8 ! , - . . , £ , = *<(l)/8!. 

The form of the function <f>(x) needs detailed consideration. This 
polynomial was obtained from the array of x's and l 's by adding all 
the terms formed by choosing one element from each column but no 
two from any row. Such an array has been called a permanent,* and 
the symbol + | | + has been used for it. The properties of the perma
nent which will be useful in this paper are given in the next section. 

3. The permanent. I t is obvious that the permanent has properties 
analogous to those properties of the determinant which do not depend 
on the fact that the determinant vanishes when two rows (or two 
columns) are identical. For example, the permanent can be expanded 
in terms of minor permanents. Of particular importance is the fact 
that the derivative of a permanent in one variable is equal to the sum 

* T. Muir, revised by W. H. Metzler, A Treatise on the Theory of Determinants, 
Muir, Albany, 1930, p. 19. 
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of the permanents formed by replacing, one column at a time, the 
elements of each column by their derivatives. 

4. Application of the permanent. As noted above, we may identify 
(j>{x) as a permanent, namely 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

+ 

(f)(x) = 
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Obviously, </>(!) = 8 !. The first term of 4>'(x) is 
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and it is easy to see that each of the other seven terms is equivalent 
to this one. Therefore 

+ 

<t>f{x) = 4 - 8 -

+ 

and 0'(1) = 4-8-7! = 4-8!. 

X X X 1 1 1 1 

X X X 1 1 1 1 

X X X 1 1 1 1 

1 1 1 X X X X 

1 1 1 X X X X 

A. i. X X X X X 

1 1 1 X X X X 

In the permanent above, one of the blocks of x's has one less col
umn and one less row than before. I t is convenient, then, to denote 
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this permanent by [ l ] . Using the same system, we will denote by 
[21] the permanent, where one block of x's is reduced by two rows 
and two columns and the other by one row and one column. 

I t can be readily verified that 0"(*) =4-8(3 -3 [2] + 4 - 4 [ l l ] ) and 
0"(1) = 4 • 8(32+42) • 6! = (4 • 52 • 8 !)/7. The succeeding derivatives may 
be written in similar fashion. 

Using these results, we may compute the factorial moments and, 
from them, the moments about the mean. 

5. The solution of the general problem. For the general problem 
we have t groups (instead of 2) of s like cards each (instead of 4). 
The general method of obtaining the moment-generating function, 
and from it the moments, is the same as was used for the special 
case, except that the work becomes somewhat more intricate and 
arduous. In the general case the function </>(x) is a permanent of n 
rows and n columns, (st = n), and has / blocks of s x's each. Then 

<t>(x) = [ 0 ] , 

4>"(X) = 0><2))2/[2] +s4 /(2)[12] ) 

0"'(s) = (s^)H[3] + 3(^2)^)2/(2) [21] + Sty*)[i*]9 

4>iv(x) = (5<4>)»*[4] + 4(S<3)S)2*(2>[31] + 3(s<2))4/(2)[22] 

+ 6C?<2)S2)2/(3)[212] + (**)«*<*> [ l 4 ] , 

and , in general , 

4>m(x) = Xc«{(^(pi))xi(^(2?2))7r2 • • • (s^^yv}
2^Pa\[p^p2^ • •. p/»], 

a 

where the notation is explained as follows : 

1. piTi indicates that pi appears Ti times in the partition of m. 
2. The summation is to include all possible partitions of m. 
3. For each term, X/n\' =p«. 

4. Ca = 

The work of Dwyer,* in a recent paper, proved to be of consider
able assistance in obtaining a compact expression for the general de
rivative, as given above. I t should be noted also that the numerical 
coefficients of the partitions which occur in our derivatives are given 

* P. S. Dwyer, Moments of any rational integral isobaric sample moment J'unction, 
Annals of Mathematical Statistics, vol. 8, pp. 21-65. 
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in his Table II.* For example, for the fourth derivative we might have 
used his "weight = 4" and read the proper numerical coefficients from 
the first column, namely, 1, 4, 3, 6, 1. 

To evaluate these derivatives of 4>{x) at x = 1 it is sufficient to no
tice that, if the sum of the bracketed numbers is j , the permanent, 
represented by the bracket, has the value (n—j)\ for x = l. For ex
ample, each of the bracketed quantities in <j>iy(x) becomes (n — 4)! 
when x is set equal to 1. 

The rest of the work necessary to calculate the moments about the 
mean is quite direct, although tedious. We obtain the factorial mo
ments by dividing <p{(x) by n\; then, by means of well known rela
tions, we obtain the moments about the mean. Representing the 
moments about the mean by /JL{ and replacing t by n/s, we obtain the 
mean and higher moments as follows: 

s(n — s) 
M 2 = — > 

n — 1 
s(n — s)(n — 2s) 

(n - \)(n - 2) 

sin — s) , 
0 - 2s) (n - 3s) (3s + 1) 

( n - \)(n- 2){n-3) lV JK J 

+ (s - l)(12ns - n - 18s2 -6s)}. 

Comparisons with the articles cited above indicate complete agree
ment between the results given for various special cases and the val
ues obtained by the use of the formulas derived in this paper. 

In conclusion, it should be mentioned that this general method can 
be applied to the more comprehensive case where the numbers in the t 
sets of the matching deck are not necessarily the same but may differ 
from set to set. Curiously, the mean is still s, but the variance is de
creased. 
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M3 = 

M4 = 

* Loc. cit., pp. 30-32. 


