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and as above this is sufficient that postulates I-V be satisfied.
With this definition of 4:B, 4 o B becomes the usual inclusion re-
lation of the algebra of classes [5].
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A NOTE ON THE MAXIMUM PRINCIPLE FOR
ELLIPTIC DIFFERENTIAL EQUATIONS

FRITZ JOHN
Let u(xy, - - -, x,) denote a twice continuously differentiable func-
tion of x1, - - -, x, in some region R. We write 0u/0x; =u;, 2 /0x,0x;
=u;x, and occasionally (x) for (x1, - - -, %.). Apoint (¢)=(c1, * * *, €n)
of R may be called a proper maximum of «, if
ui(c) =0 for i=1,-.,mn,
> w0tk < 0 for all (€1, -, &) #(0,-++,0).

i,k
A partial differential equation

) > an(@)ua(x) + 2 bi(#)ui(x) =0
i,k i
(where the ay and b; are defined in R) is called elliptic if for every

(x) of R
> ain(®)EE 2 0
i,k

forall (¢, - - -, &) and <O forsome (&, « « -, &,).
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It is well known, that a solution % of (1) can not have a proper
maximum.* For if # had a proper maximum at (¢i, - -+, ¢»), then
Zi',ca;k(c)u,-k(c)=0. If A and U denote respectively the matrices
(a¢i(c)) and (ui(c)), this may be written: Trace (4-U)=0. By a
suitable orthogonal transformation 4 may be transformed into a
diagonal matrix 4’=(a{8s), U going over into U’=(uj;) by the
same transformation. As the trace of A-U is preserved, we have
> i u=0; on the other hand, as 4’ still belongs to a semi-definite
quadratic form and U’ to a negative definite one, we have a/ =0 for
i=1,---,n, but <0 for some 4, and ;<O for all 4. This leads to
a contradiction.

A second important property of the solutions # of (1) is that they
form a module, that is, that every linear combination with constant
coefficients is again a solution.

We shall prove that these two properties are also sufficient to char-
acterize a family of functions as solutions of an elliptic equation (1).

THEOREM. Let F be any family of twice continuously differentiable
Sfunctions u(xy, - - -, x,) defined in R, such that

(a) the functions of F form a module,

(b) no function of F has a proper maximum.
Then there is an elliptic differential equation (1) satisfied by all functions
of F.

ProoOF. Let (¢)=(c1, - - -, ¢a) be a point of R. Let ¢ be the sub-
module of functions # of F for which %;(c) =0 for ¢=1, - - -, n. Let
Q(&, - - -, &) denote the quadratic formz,.'ku,-k(c)&ék for any u in ¢;
Q is certainly not negative definite. These quadratic forms form
again a module M. Let Q1, Qz, - - -, Qn form a basis of this module
(m =n(n+1)/2), such that for every Q of M

0, 8 = NG+ &)

with certain constants ;. We know that for every (\y, - + -, ) there
are (&1, - - -, £,)5%(0, - - -, 0) such that
) DNQilks, -+ -, ) 2 0.

=1

From this we can easily conclude that the Q; satisfy a linear relation

* Cf. Encyklopiddie der Mathematischen Wissenschaften, vol. 2, 1.1, p. 522, or
Picard, Traité d’Analyse, 3d ed., vol. 2, p. 29 for the case »=2. The subsequent
proof follows Courant-Hilbert, Methoden der Mathematischen Physik, vol. 2.
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with positive coefficients.* For let 2 denote the set of points with
coordinates (Qi(£), Qa(£), - - -, Qw(£)) in an m-dimensional space,
where ()= (&, - - -, &) varies over all points of the unit sphere
24824 - - - +£2=1. The set 2 is closed and finite. The relation
(2) may be interpreted as stating that every half-space bounded by
a plane through the origin contains points of Z. Thus the origin is
contained in the convex extension of Z. Then there exists a finite
set of points Py, - - -, P, of 2 and positive numbers yi, * - + , -, such
that the origin is the center of mass of the masses u; placed at the
vertices P;.T Let (&, - - -, £,%) be the point (&, - + -, €.) correspond-
ing to P;. Then

ZM?’Qk(EIj’ tt Ty Enj) =0

i=1

for k=1, . - - , m, and consequently

D uQEd, - E) =0

=1

for every Q in M. Thus

2 2 miki(es, -+ -, Ca)EEF =0

i=1 4,k
for u in ¢. Putting Y u;&7 £ =a:u(c), we have
Z aik(c)uik(c) =0
ik
for # in ¢. Besides
2 aa()tbn = D niEfE)? 2 0
i,k 1Y)
and >0 for some (&, - - -, &,).

Now let u(x1, - - -, x,) denote an arbitrary function of F. The vec-
tors (y1, - - -, ¥a) = (#1(c), us(c), - - -, #a(c)) again form a module N,
if u varies over F for fixed (c). Let (3, v, + - -, v1), (92, - - -, v.2),
s, (e - -, ya®) form a basis of N, (s <#n). Without restriction
of generality we may assume that this basis forms an orthogonal sys-
tem:

Zyﬂyﬁ:aik’ i’k=1>""s-

=1

* Cf. L. L. Dines, this Bulletin, vol. 42, p. 357, and the paper of R. W. Stokes
Transactions of this Society, vol. 33, p. 782 et seq.
t Bonnesen-Fenchel, Theorie der Konvexen Kirper, p. 9.
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Let #'(x, ¢), u%(x, ¢), - + -, u*(x, ¢) be the functions of F correspond-
ing to the vectors
uf (¢, ¢) = yk.

Then for every # in F

ui(c) = 2 Niyd

=1
with
M= 2 uo)yi
k=1
Thus
ui(c) = Z Z ur(c)ui? (c, c)ui(c, c).
7=1 k=1

Consider the function
a(x) = u(x) — il kil ur(c)ui’ (¢, c)ui(x, c).
=1 k=
Then 4 is in F. We have
a:(c) = ui(c) — il kiluk(c)ukf (¢, ui(c,c) = 0.
=1 o
Hence % is in ¢. Consequently

0= Z an(c)aan(c) = Z an()uin(c) — 2 am(c)ur(c)ui (c, c)u;’;,(c, c).

$,4.kh
Thus u(x) satisfies the elliptic equation

0= Z amn(x)un(x) — E am(x)ui(x, x)ufh(x, x)ur(x).
ih
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