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APPROXIMATION TO A GIVEN FUNCTION BY MEANS 
OF POLYNOMIALS IN ANOTHER GIVEN FUNCTION* 

W. C. RISSELMAN 

1. Introduction. The problem considered in this note is that of 
approximating to a given function f(x) in a given finite interval by 
means of polynomials in another given function </>(x) so as to mini­
mize the integral of a positive power of the absolute value of the 
error. The purpose is to extend the results of Jackson in the theory of 
approximation by means of polynomials to the case in which x is 
replaced by 0(x). Questions of convergence are confined to uniform 
convergence. While some of the facts in connection with the problem 
can be recognized almost immediately, further study leads presently 
to material complications. This note will give some of the results 
which are obtained most readily, and others which by their limita­
tions indicate the directions in which difficulty is encountered. It con­
tains the first steps toward the solution of a general problem whose 
interest is believed to be so great as to warrant an approach under 
somewhat strong restrictions. While some of the hypotheses seem 
artificial they are made because of the necessity of recognizing defi­
nite limits beyond which the problem does not appear to lend itself 
to treatment by the methods employed. The study of the problerri qî 
convergence is divided into two sections. First is considered the case 
in which <j>(x) is monotone; then, the case in which c/>(x) is not mono­
tone. 

2. Existence and uniqueness. The following theorem on existence 
is a corollary of a theorem proved by Jackson.f 

THEOREM 1. Let <f>(x) be a real function of the real variable x which 
has the following properties : 

A. (j>(x) is bounded and measurable for a^x^b. 
B. If the set where <fi assumes any n values is excluded, the measure of 

the complementary set is positive. 
Then if fix) is bounded and measurable on (a, b), and if mis a positive 

constant, there exists at least one set of coefficients c in 

Pn[<t>(%)] = C0n + Cln<l>(x) + C2n<t>Koc) + • • • + Cw n0n(#) 

* Presented to the Society, April 7, 1928. 
t A generalized problem in weighted approximation, Transactions of this Society, 

vol. 26 (1924), p. 137. 
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for which the value of the integral 

(1) f |/(*)~Pn[<K*)]N* 
J a 

is a minimum. If m>\, the minimizing polynomial is uniquely deter­
mined. 

A polynomial which has the minimizing property will be called an 
approximating polynomial. 

3. <j>(x) monotone. A theorem on convergence of a sequence of ap­
proximating polynomials is the following: 

THEOREM 2. If f{x) is defined and has a continuous pth derivative 
on the interval (a, b), and if(j>{x) is defined and has p continuous deriva­
tives on (a, b), the first of which is non-vanishing, then the sequence of 
approximating polynomials, or any sequence of approximating poly­
nomials if the determination is not unique, converges uniformly to f{x) 
on (a, b) as n—* *> if m satisfies the condition m ^ 2/p. 

If <f>' (x) > 0 , if <j>{a) =A and <j>(b) =B, and if the hypotheses of the 
theorem are satisfied, the integral (1) becomes 

(2) fBg'(y)\h(y)-Pn(y)\mdy, 

where g{y) is the function defined by the equation y—<j>(x), and 
h(y) =fh(y)]- The function g'(y) is continuous and greater than zero 
on (A, B) and h{y) has a continuous pt\i derivative. The proof then 
makes use of a corollary to Bernstein's theorem on the derivative 
of a real polynomial, or MarkofFs theorem on the derivative of a 
polynomial, together with a theorem on polynomial representation.* 

If <t>{x) is monotone and (f>'(x) has zeros, the following theorem 
holds : 

THEOREM 3. If fix) is defined and has a continuous first derivative on 
(a, b), if <fr(x) is a monotone f unction which is defined and has a con­
tinuous first derivative which has a finite number of zeros on this interval, 
and iff'(x)/cl>'(x) has a finite limit as x approaches a zero of <j>'(x), the 
sequence of approximating polynomials {Pn\_<t>{oc)\} converges uniformly 
tof{x) on (a, b) as n—><*>, provided w ^ 2 . 

* For details the reader is referred to pp. 96 and 97 and the corollary on p. 18 of 
The Theory of Approximation, by D. Jackson, American Mathematical Society Col­
loquium Publications, vol. 11, New York, 1930. Hereafter this book will be called J. 
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Under these hypotheses the weight function g'(y) in (2) has dis­
continuities. However, the validity of the transformation of (1) into 
the form of (2) can be established by examining the formulas with 
consideration of the fact that g (y) is continuous and is the integral of 
its own derivative. Then one proves that hf(y) is a continuous func­
tion. Let (D, E) be an interval in which g\y) is continuous at every 
point except D. Let limx^0(D)f'(x)/<l>'(x) =L. Let \l/(y)=hf(y) on 
D<y^E, \(/(D)=L, and 

H(y) = h(E) + f\(y)dy 
J E E 

Then H'{y) is continuous on the closed interval (D, E), and H(y) 
= h(y) on this closed interval. I t can now be seen that the hypotheses 
of one of Jackson's theorems are satisfied.* 

It is to be noticed that the above hypothesis that f'(x)/<j)f(x) has 
a finite limit as x approaches a zero of 4>'(x) is very restrictive. It 
means, for instance, that ƒ ' vanishes wherever <ƒ>' vanishes. But if 
f '!<$>'—>0° as x approaches a zero of <£', then the first derivative of 
h(y), the function to be approximated, is discontinuous. 

The hypothesis that the derivative of </>(x) is defined everywhere 
will now be abandoned. The following theorem holds: 

THEOREM 4. If <j>(x) is a monotonie function which is defined for 
a^x^b and satisfies the condition that there exist positive numbers k\ 
and &2 independent of x such that 

ki\ X2 — X\ P3 S 
<j>(x2) — 4>(xi) 

X2 — %i 
S fet, 

where a^Xi, x2^b, Xi9^x^ and /3^0 and independent of x; if f{x) is 
any f unction which on (a, 6), is defined and satisfies a Lipschitz condi­
tion of order a | ƒ(#2) — f(xi) | ^SX| x2 #1 , where X is independent of x, 
then the sequence of approximating polynomials {Pn [#(*)]} converges 
uniformly to f(x) on (a, b) as n—»<*> provided a, /3, and m satisfy 
ce/(l+j8) >2/m, and it converges uniformly to f{x) on any closed in­
terval interior to (a, b) as n—><*> provided that these quantities satisfy 
the inequality a/(l +/3) >l/m. 

Under these hypotheses the integral (1) equals the Stieltjes integral 

T » = fB\f[g(y)]-Pn(y)\mdg. 
J A 

* J, Theorem VII of chap. 3. 
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Suppose there exists a sequence of polynomials {pn(y)} such that 
I ƒ h(y) ] "~Pn(y) | ^ €n on (A, B). By using the corollary to Bernstein's 
theorem which was used before and an iteration process* it can be 
shown that |ƒ[g(y)]—Pn(y)\ does not exceed 

(3) 5ew + d1n*l«^n
llm 

on (a, b) and 

(4) 5€n + d2(n>>ynyi™ 

on any closed interval interior to (a, b), where v = l + (m + l)~k, k is 
an arbitrary positive integer, and the d's are constants. In the follow­
ing manner it is seen that ƒ [g (y)] satisfies a Lipschitz condition of 
order a/(l+(3). Since/(x) satisfies the Lipschitz condition of order a, 
if 3>x and y2 are any two values of y on (A, B), 

I My*)] - Mvù] I ^ X | g(yi) - g(yi) |a . 

From one of the conditions imposed on 4>, 

I g(y») - g(yù \a ^ (i/kO"ll+f) | y* - y i l "" 1 *" . 

Therefore ƒ [g(y)] satisfies the Lipschitz condition 

I ƒ[*(?«)]-/k(yO] I £ XiI yt - yi|«'<1+», 
where Xi=X(l/fei)a/(1+/3). Since ƒ [g(y)] satisfies this Lipschitz condi­
tion, en may be taken equal to K/na,a+^y where K is a constant, and 
yn is found to be less than a constant times n~ma,a+P). These expres­
sions are then substituted in (3) and (4). 

If a = 1 and /3 = 0, the last theorem reduces to the theorem : 

If <f>(x) and fix) are defined f or a^x^b, if<j>{x) is monotone, and if 
there exist positive constants ki, k^ and X independent of x such that 

kxS 
4>(xi) — 4>(xi) 

X2 — Xi 
^ h 

f(x*) - f(xi) 

X2 — Xi 
^ X , 

where Xi and x2 are any two distinct values of x on (a, b), then the se­
quence of approximating polynomials converges uniformly to f(x) on 
(a, b) as n—> <*> if m > 2 , and it converges uniformly to fix) on any closed 
interval interior to (a, b) as n—> <*> ifm>l. 

Under suitable hypotheses,f including the one that <f>(x) has a con-

* J> PP* 96 and 97, and J. M. Earl, Polynomials of best approximation on an infinite 
interval. Transactions of this Society, vol. 32 (1930), p. 3. 

f The reader will find that a theorem can be formulated so that its proof depends 
on Theorem VII in chap. 3 of J. 
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tinuous non-vanishing first derivative where c/> is continuous, it is also 
found that the sequence of approximating polynomials in a monotone 
4>(x) converges uniformly to ƒ (x) on (a, b) as n—»oo if m ^ 2 in case 
<j)(x) has a finite number of finite jumps. In this case the integral is 
transformed to the form (2). If <j>{x) jumps from C to D at a certain 
value of x, h{y) is taken to be a suitable polynomial of the third de­
gree in y on (C, D), and the hypotheses on ƒ and <j> may be made so 
that h(y) has a continuous first derivative on {A, B). The weight 
function is taken to be zero on the open interval {C,D). 

4. (j>(x) not monotone.* If 4>(x) has the same value for different 
values of x, so also will any polynomial in 0(x) for these same 
values of x. Now, if the values of/(x) for these values of x are differ­
ent, no sequence {Pn[$(x)]} of approximating polynomials can con­
verge to/(x) for these values of x. However, under certain hypotheses 
it can be proved that such a sequence converges to a suitably defined 
mean of the values of/(x) corresponding to a single value of 0(x). 

Let ƒ(x) be a function which is defined and continuous and which 
has a continuous first derivative on a^x^b, and let 0(x) be a func­
tion which satisfies the following conditions : 

A. It is continuous on a^x^b. 
B. I t has a finite number, say (g + 1), of maxima and minima on 

(a,b). 
C. The maxima of <j> are all equal and the minima are all equal. 
D. Let the values of x, arranged in order of increasing values, for 

which <t> has maxima or minima be denoted by a = ao, a,\> #2, • • • , 
aq = b. Then 0(x) has continuous first and second derivatives on all 
intervals a<^x^a,-+i, (i = 0, 1, • • • ,g —1). 

E. The relation | 0 ' (x ) | ^ & > 0 , where k is independent of x, holds 
for all values of x for which |<£'(x) | is defined. 

The integral (1) may be written in the form 

7» = i ; fB\gUy)\\f\gi(y)]-Pn(y)rdy, 
t=l J A 

where g%(y) is the function inverse to <p(x) in the ith subinterval and 
A is the minimum value of <j> and B its maximum value. 

Consider the function 

H(z,y) = ±\gi{y)\\z-f[gi{y)}\m. 
i=l 

* A paper on a different subject, the methods of which nevertheless have a bearing 
on the rest of this note, is that by D. Jackson entitled On the trigonometric representa­
tion of an ill-defined f unction, Annals of Mathematics, (2), vol. 26 (1924), pp. 8-20. 
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If any value on (A, B) is assigned to y there is exactly one value of z 
which minimizes H(z, y) if m>\. If there were two such values, say 
Z\ and 22, then since the curve Y= | X\ m is concave upward, 

i = *> 2 > * • • > ?> 

and a contradiction would be obtained. Thus z is defined as a single-
valued function of y, which will be denoted by F(y). By taking the 
partial derivative of H with respect to z it is found that the equation 

(5) i\gi'(y)\\z-f[gi(y)]\m-isgn{z-f[gi(y)]} = 0, 

defines z 'as this function of y. Under suitable hypotheses it will be 
proved that the sequence {Pn(y)} converges uniformly to F(y) as 

Consider, first, two special cases : (i) m = 2, q is arbitrary; (ii) m > 2, 
q = 2, where the explicit expression for F(y) will be given, 

(i) rn = 2, q is arbitrary. If m = 2, it is found from (5) that 

£l«/(y)|/k<(y)l 
F(y) = -?—t • • 

ZU/ool 
i= l 

The integral 7„ may be expressed in the form 

Tn = C £ I g/(y) I {(ƒ[*(?)] - F(y)) + (F(y) - Pn(y)))Hy. 
J A t= l 

By expanding this expression and taking (5) into account it is found 
that 

Tn = f* i\g( I [/fe) -F]>dy+ ("I ±\gi \\ {F - P%)Hy. 

Thus the original problem is reduced to that of approximating to F(y) 
by means of polynomials in y. From the hypotheses it follows that 
F(y) has a continuous first derivative on (A, B) and that the weight 
function ]C«-i | £i I has a positive minimum on this interval. Thus one 
has the theorem:* 

* See J, Theorem VII of chap. 3. 

Zi + Z2 

- / ( f t ) 
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THEOREM 5. Iff(x) has a continuous derivative on (a, &), if<t>{x) satis­
fies the hypotheses A to E, and if m = 2, the sequence {Pn[<t>(x)\} con­
verges uniformly as n—> <*> to the function 

È\g!(<t>)\f[g<(<t>)] 
F[<t>(x)] = — on (a,b), 

iu/(*)i 
where F[<f>(x)] is obtained as follows: Corresponding to any value of x on 
{a, b) a value of y is determined by means of y=(j>(x). Using this 
value of y one obtains from x = gi(y)> (i=l, 2, • • • , g), q values of x, 
sayt #(1), #(2), • • • , x(q). Then F[<j>(x)] is the indicated mean of the 
values f (x™), f (x™), • • • ,ƒ(*<«>). 

(ii) m > 2 , q = 2. If the inverse of </> is double-valued and m > 2 , the 
function of y defined by (5) is given by 

^ „ , , I gi \mm~i)f(gù +1 gi \ui~-i)f(gt) 
(6) F(y) = : ; 1 ; • 

gi |1/ (m_1) + gi i/C«*-D 
Again F(y) has a continuous first derivative on (A, B). Let the func­
tion G2(s, y) be defined by the equation 

<*(*, y) = £ \gl(y) 11 z - \f[gi(y)] - t»(y)\ |~, 

where pn{y) is the Tchebychef polynomial, of degree ^n, of best 
approximation to F(y) on (A, B). Let Ui{y) =f[gi(y)]~pn{y) and 
let ILn(y)=Pn(y)-pn(y). Then ui(y)-Un(y)=f[gi(y)]-Pn(y) and 
Tn=/lGî2[lIn(3;), y]dy. The second derivative of G2 with respect to z 
is continuous in the region R:( — M^z^M;A^y^B)> where M de­
notes the maximum of | F(y) | on (A, B). Let z0 = F(y) —pn(y) be the 
value of z for which G2(z, y) is a minimum. Expansion of G2 according 
to Taylor's theorem gives 

G2(0, y) = G2(z0, y) + W G « " ( U y), 

where fo is between 0 and z0l and Gi' denotes the second derivative 
with respect to z. Let en be the maximum of | s 0 | on (A> B). Then 
en^M. I t follows that U satisfies —M^fo^Af for all y on (-4, J3). 
Let the maximum of Gi ' in .R be denoted by 2 V. Then 

G,(0,y) ^G2(z<» y) + z0
2V 

for all y on (A, B). Therefore 
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J» B /• B 

Gt<JI»,y)dyg I Gj(0, y)dy 
A JA 

f Gi(z*,y)dy + Vt2{B-A). 
J A 

( 7 ) 

< 
' A 

Let fin= \Un(yo)\ be the maximum of | l lw(y)| on (A, B). By using 
MarkofFs theorem and the mean value theorem it is found in the 
usual manner that, if M^4en, then | n w —So| ^Mw/4 throughout an in­
terval L of length (B— A)/4n2. Let K be the maximum and k the 
minimum of | g{ (y) \ + \ gl (y) | on (A, B). Let d > 0 be a fixed number 
which satisfies d<kllmK~llm/4:(l+kllmK-llm). The part of the inter­
val L on which 

\f[gi(y)]-f[g>(y))\ eat* 

is considered separately from the rest on which this expression is 
greater than d\xn. In the first case, use is made of the explicit expres­
sions for G2(IIn, y) and (?2(0, 3/), and in the second case use is made of 
the expansion 

G2(nn, y) = G*(*O, y) + i(n„ - *o)2G2"(r, y), 

in order to show that C?2(nn, y) ĵ G^Oso, y) +cfjin
m throughout L, where 

c is constant and positive. Then it is seen that 

Tn ^ I [G2(Z0, y) + ^ n m ] ^ + I ^(^0, y)<ty 

(8) L eL 

" B 5 -A S' 
J A 

G2(zo, y)dy + c\x™ 

where fL means the integral over the interval L, and fcL means the in­
tegral over the rest of (Ay B). From (7) and (8) it follows that 

Mn ö f ) (nenyi™ if Mn ^ 4en. 

Now | F(y)— Pn(y)\ ^€ n+/x n on (̂ 4 £ ) . Since F(y) has a continuous 
derivative, limn-oo^€n = 0. Therefore, \F(y)—Pn(y)\ approaches zero 
uniformly, whether /zw^4en or not. One now has the theorem: 

THEOREM 6. If f(x) is defined and has a continuous first derivative 
on (a, b) and if <f>(x) satisfies the hypotheses A / Ö E with q = 2, the se­
quence {Pn[4>(x)]} converges uniformly to F[cj>(x)] on (a, b) as n—»oo 
if n > 2 , where F is given by (6). 
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Regarding the general case in which m > 2 and q ^ 3 one can state 
the following theorem : 

THEOREM 7. Iff{x) is a univariant function which is defined on (a, b) 
and has a continuous first derivative on this interval, and if <j>(x) satis­
fies hypotheses A to E with g ̂  3, the sequence {Pn [(t>(x) ]} converges uni­
formly to F[(f>(x)] on (a, b) as n—><x> if m>2, where F is the f unction 
defined implicitly by (5). 

In this case no explicit expression is obtained for F{y). The function 

G(z, y) = ± | gl(y) | \z - {f[gi(y)] - pn(y)} |~, 

where pn(y) is the Tchebychef polynomial corresponding to F(y), is 
introduced. The hypothesis of univariance of f{x) is used to prove 
that -F'C^) is continuous on (Ay B) and to show that Gft(z, y) has a 
positive lower bound in the region R':(A ^y^B; — oo <z< °o). The 
expansion 

G(z, y) = G(*o, y) + h(z - zo)*G"(Ç, y) 

is used to compare (3(0, y) and G(IIn, y) with G(so, 3>). The rest of the 
proof is similar to the corresponding parts of the proof of the theorem 
immediately preceding this one. 

In case m = 1, it can be shown, by methods that offer no essential 
novelty, that the sequence of approximating polynomials converges 
uniformly to F[(f>(x)] in any finite set of closed intervals not contain­
ing points where </> has maxima or minima, provided ƒ and <f> satisfy 
suitable hypotheses under which c/> has a continuous first derivative 
everywhere on (a, &), this derivative not being required to be every­
where different from zero. However, these hypotheses exclude func­
tions 0 with a continuous second derivative. In special cases it is 
found that convergence occurs even in this case. For example, if the 
interval is ( — 1, 1), then Pn{x2) is the partial sum of the Legendre 
series for E(x)=%[f(x)+f( — x)] taken through the term involving 
02n(#), where c/>i(x) is the ith normalized Legendre polynomial. 
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