
SOME TOPICS IN SAMPLING THEORY* 

BY H. L. RIETZ 

1. Introduction. Many important contributions have been 
made to "small or exact sampling theory" since 1908, when 
"Student's" contribution f created a new interest in the subject. 
A general notion of the extent of the literature on this topic may 
be obtained by an examination of the excellent survey by P. R. 
Rider $ in 1930. Next, J. O. Irwin § gave valuable reports on this 
literature for approximately the years 1930-1934. Then Rider|| 
brought the survey on exact sampling theory well up-to-date in 
a paper of 1935, and again for part of the field in 1936. 

The invitation to give a paper at this meeting left me free as 
to the selection of a subject. This freedom was interpreted to 
mean that you would probably prefer to have me speak on some 
topics in which I have a special interest, rather than to attempt 
a well-balanced discussion of recent progress for which we may 
well turn to the papers mentioned above as surveying the con­
tributions to exact sampling theory. 

On the side of applications, sampling theory is much con­
cerned with judging, by means of one or more tests, whether an 
observed random sample, taken as a whole, conforms reason­
ably to samples expected from a specified population. Test cri­
teria may be based on such concepts as the mean, the variance, 
the standard deviation, the Pearson x2, the "Student" ratio, the 
Fisher z, the correlation ratio, and other statistical estimates of 

* An address delivered before the Society on November 27, 1936, in 
Lawrence, by invitation of the Program Committee. 

f The probable error of the mean, Biometrika, vol. 6 (1908-09), pp. 1-25. 
% A survey of the theory of small samples, Annals of Mathematics, (2), vol. 31 

(1930), pp. 577-628. 
§ Recent advances in mathematical statistics, Journal of the Royal Statistical 

Society, vol. 94 (1931), pp. 568-578; vol. 95 (1932), pp. 498-530; vol. 97 (1934), 
pp. 114-154; vol. 99 (1936), pp. 714-769. 

|| Recent progress in statistical method, Journal of the American Statistical 
Association, vol. 30 (1935), pp. 58-88. Annual survey of statistical technique de-
vélopments in the analysis of multivariate data, Part I, Econometrica, vol. 4 
(1936), pp. 264-268. See also C. F. Roos, Annual survey of statistical techniques: 
The correlation and analysis of time series, Part II, Econometrica, vol. 4 (1936), 
pp. 368-381. 
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averages or parameters calculated from a sample. In what fol­
lows, my apparent freedom will be exercised by choosing to em­
phasize the "Student" ratio, although commenting briefly on 
some of the other concepts mentioned above and on certain of 
their generalizations. This choice of emphasis is perhaps largely 
one of expediency as it seems simpler to discuss, before a general 
mathematical audience, the concept and sampling theory of the 
"Student" ratio than of any one of the other concepts whose 
exact sampling theory is finding many applications. 

I t seems convenient to divide the paper into two parts. In 
Part I it will be assumed that the random samples are drawn 
from normal parent populations, whereas in Part II we shall 
deal briefly with random samples drawn from certain specified 
non-normal populations. 

PART I 

RANDOM SAMPLES FROM NORMAL PARENT POPULATION 

2. Distribution Function of the Sum of Squares. While it seems 
appropriate to cite "Student's" paper* of 1908 as marking the 
beginning of what is commonly regarded as "small or exact 
sampling theory" in applied statistics, it also seems to be ap­
propriate and historically correct to direct attention to papers 
by Helmertf published in 1875-1876 that gave the basis for 
starting a new small sampling development from his theorems 
concerning the theoretical distribution function of the sums of 
squares of true and of apparent errors. In the language of sta­
tistics, these theorems may be expressed as follows. 

Given a normal parent population of x's with mean 0 and vari­
ance <r2 from which are drawn at random each of N independent 
values, Xi, x2, • • • , XN, measured from the population mean as the 
origin, giving as the sample mean x = (xi+#2 + • * * -\-xN)/N and 
as the second moment of the sample from the population mean 
s2 = p = (x?+x£+ • • • +Xj?)/N. Then the probability that the 

* Loc. cit. 
t Ueber die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und 

über einige damit im Zusammenhange stekende Fragen, Zeitschrift für Mathe-
matik und Physik, vol. 21 (1876), pp. 192-218; see also Astronomische Nach-
richten, vol. 85 (1875), No. 2039; ibid, vol. 88 (1876), No. 2096-7. See also 
E. Czuber, Theorie der Beobachtungsfehler, 1891, pp. 136-164. 
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sum of squares of deviations U = x? +x£ + • • • +x^ will f all 
into the interval U to U+dU is given* by 

(1) U^N-2^2e-ui^UU. 
2Nl2aNT(_\ 

If we let U=Np, we obtain as a corollary of (1) that the 
probability that a sample value of p will fall into the interval dp, 
at p is given by 

/N\N12 1 
(2) ( — ) pw-vi*<rir*n*>')dp. 

2 <*r(f) 
The distribution functions (coefficients of d U and dp) in (1) and 
(2) were derived by Helmert in a rather elegant but somewhat 
tedious manner involving mathematical induction. In statistical 
applications we do not ordinarily know the mean of the popula­
tion nor the variance, <r2, but make estimates of their values from 
a random sample. To deal with this situation, Helmert found 
that the probability that the sum of squares of residuals 
(3) u = Np = (*i - x)2 + (x2 - x)2 H + (xN - x)2 

will fall into the interval dUat U is the same as the probability 
that the sum of squares of N— 1 discrepancies from the popula­
tion mean will fall into the same interval, so that the frequency 
function of the sample variance s2 = p given by (3) is equal to 

(4) ( — ) — 7-~fl(N-3)/2e-Nli/(2<T2)9 

•<rr) 
The frequency functions (1), (2), and (4) are Pearson Type 

III functions. Although Czuber in his Beobachtungsfehler (1891) 
gave, in an improved notation, a good account of Helmert's 
contributions, neither the theoretical nor the practical import 
of the discovery was recognized in practical statistics until long 

* It is to be understood throughout this paper that "is given by," used be­
fore an element for integration, means "is given, to within infinitesimals of 
higher order, by. " 
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after Pearson in 1900 had arrived at the distribution of his %2 

and "Student" had in 1908 inferred the distribution of the vari­
ances, s2, from the relations he had found among the expected 
values of the first four moments of variance. 

"Student" was first to recognize the fundamental importance, 
for the theory of small samples, of taking account of the simul­
taneous sampling variations of x and 5 since the ratio, x/s, is 
used whenever we enter a normal probability table with 5 as an 
estimate of o\ On the basis of finding a linear correlation equal 
to zero between x2 and s2, "Student" correctly inferred, by 
means of a remarkable intuition, the independence of x and s2 

in the probability sense of independence. This property of inde­
pendence of x and s2 was established explicitly by R. A. Fisher* 
by showing that the simultaneous distribution function of x and 
s2 is the product of two functions, one of which contains x but 
not s and the other contains s but not x, and it was implicitly 
contained in earlier work by Karl Pearson f and others. J 

By considering the ratio z = x/s and taking into account the 
sampling variations of s as well as those of x, "Student" found 
the probability that a random sampling value of z will fall into 
an assigned dz to be 

T(N/2)dz 
(5) K—^ 

(N - 1\ 
Tr^rf J( i + z2)N'2 

For values of iV>30, it is frequently satisfactory to employ the 
normal function 

[ ] e-(N-3)z2!2 
\ 2TT / 

for (5) in applications. 
A small probability table of the integral of (5) for iV = 4 to 

N= 10 is given by "Student" § in his original paper and later in 
a somewhat more extensive table|| for N = 2 to N = 30 in 1915. 

* R. A. Fisher, Applications of "Student's" distribution, Metron, vol. 5 
(1925), No. 3, pp. 90-93. 

f Karl Pearson, On the distribution of the standard deviations of small sam­
ples, Biometrika, vol. 10 (1915), pp. 522-529. 

% U. Romanowsky, On the moments of standard deviations and of correlation 
in samples from a normal population, Metron, vol. 5 (1925), No. 4, pp. 8-12. 

§ Loc. cit., p. 19. 
|| Biometrika, vol. 11, pp. 414^17. 
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These tables give the probability (to four places of decimals) 
that a sample value of z shall fall between — <x> and an assigned z. 

The revolutionary character of the idea introduced by "Stu­
dent" comes forcibly to light by making applications that in­
volve drawing probable inferences from small samples, say from 
a sample with N= 10, and perhaps even more forcibly in follow­
ing the generalizations of the "Student" idea. 

3. The Fisher Modifications and Generalizations. For purposes 
of generalization, it seems that, in tests of significance, there are 
some advantages in following R. A. Fisher's modification of the 
"Student" ratio by using the ratio of x to its own standard devi­
ation, s/(N—l)1,2

} as estimated from a sample. Then with 

x x t 
t = _ ( # - 1)1/2 o r z = — = ; 

S S (N - l ) 1 ' 2 

the probability that t, from a sample of N, will fall into dt is 
given by 

(6) /N - 1\ / t2 Vv/2 

The extensions of the "Student" ratio by R. A. Fisher may be 
described as schemes for making the "Student" idea applicable 
to a wide range of data largely by emphasis on building a vari­
able / in the nature of a fraction whose numerator is a variate 
normally distributed about zero and whose denominator is an 
unbiassed estimate of the standard deviation of the numerator. 
Fisher applied this principle in the building of appropriate vari­
ables to obtain new tests of the significance of the difference 
between two means, of a linear regression coefficient, of non­
linear regression coefficients of orthogonal functions, and of the 
coefficients in a multiple regression surface. 

4. Generalization of the "Student" Ratio* Both applications 
to situations involving more than one variable and the natural 

* Harold Hotelling, The generalization of "Student's" ratio, Annals of Mathe­
matical Statistics, vol. 2 (1931), pp. 360-378. 
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tendency to generalize important ideas probably suggested the 
generalization of the "Student" ratio to multivariate situations. 
Hotelling's generalization sets up a function T of n variables 
Xi, X2, • • • , xn, each of which is measured for N individuals. 

To obtain a general notion of the nature of T, consider 
first the deviations of sample values from a hypothetical set 
of mean values mi, ra2, • • • , mn. We may calculate the means 
#1, #2, • • • , #n, of the samples, and put £» = (#»• — mt-)/iV

1/2. As­
suming the individual items to be taken independently from an 
infinite population, the expected value of f* will be zero. To 
outline a procedure for estimating the values of the variance and 
covariances, we may write Xik = Xik — Xit where Xik is the value 
of Xi for the £th individual. Then take 

1 N 

\t) dij = dj% = ~~" ~~ / j XikXjk) 

N - 1 fo.! 

and 

An = Aji = (cofactor of an in | a»,-1 ) / j a%j\ , 

where \dii\ denotes the nth. order determinant of elements a,-,-. 
Then the measure of simultaneous deviations employed in the 
generalization is the quadratic form 

(8) r* = ES^^f. 
i=l j - 1 

In problems of examining the deviation of a single variable 
from zero, T reduces to the Fisher modification of the "Student" 
ratio. For problems of examining the deviations from zero of 
two variables, say x and y, T2 reduces to 

N /x2 2rxy y2\ 
r2 = -f — + -^j 

in a familiar notation involving sample means, variances, and 
the coefficient of correlation. 

Illustrations of the situations to which the T2 may be applied 
include the comparison of means of two samples of n variables, 
and comparison of regression coefficients for functions of more 
than one variable. Deviations, #,-*., of the observations from 
means, or from regression functions, or other such functions, are 
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used to estimate the variances and covariances, a^. The distri­
bution function of T is found to be given by 

2T[— V n ~ l 

/N - n\ /n\ ( T2 \N'2 

rH-)r(7)<*-1)""(1+^i) 
5. Generalization of Variance. In 1932, Wilks* gave general­

izations to w-variate populations of the concept of variance and 
found the distributions of several important functions of the 
sample observations whose distribution laws had been estab­
lished when the sampling was limited to univariate normal 
populations, f 

More specifically, the extensions in question are concerned 
with the generalization of the concept of variance itself, and of 
such other concepts as the Fisher z, the correlation ratio, y, the 
related 1 —Y2, the "Student" ratio previously generalized by 
Hotelling, the X-criteria of Pearson and Neyman, so as to give 
each of these concepts a meaning for multivariate populations 
and for samples from such populations. In his article of 1934 
giving "recent advances," Irwin states very appropriately that 
this paper by Wilks gives generalizations of the greatest interest. 

In a notation differing only slightly from that used above, 
Wilks takes 

1 
(10) an = — (Xih - %i)(Xjk - ocj), (i,j = 1, 2, • • • , n). 

The determinant | ai3-\ was adopted as the generalized sample 
variance. Wilks points out that \aa\ for w-variate samples and 
the ordinary variance for univariate samples are similar in the 
way they arise in maximizing likelihood functions. 

6. Distribution of Generalized Variance. Wilks found the dis­
tribution function of | at-/| by the method of moment generating 

* S. S. Wilks, Certain generalizations in the analysis of variance, Biometrika, 
vol. 24 (1932), pp. 471-494; Moment-generating operators for determinant of 
product moments in samples from a normal system, Annals of Mathematics, 
(2), vol. 35 (1934), pp. 312-339. 

t See J. Wishart, The generalized product moment distribution in samples 
from a normal multivariate population, Biometrika, vol. 20A (1928), pp. 32-52. 
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functions. His success seems to depend largely on the fact that 
he obtained the solutions of two integral equations that have a 
wide application. The distribution function of £ = | a»/| took the 
form of a multiple integral which could be integrated and ex­
pressed explicitly for special values of the parameters and for 
w = l and n = 2. Thus, for n = l, the distribution function re­
duced to the well known distribution of ordinary variance 
given in (4). For n = 2, the distribution function for generalized 
variance is 

2N~*A oW-2)/2t(^-4)/2e-2U2$)1/2 

(11) D*(Q = 

where 

T(N - 2) 

N2 

4*t<rl(l-pif) 

In 1934, Kullback* obtained the distribution function of £ in 
explicit form for any positive integral value of n, by the use of 
characteristic functions. 

7. Distribution of the Ratio of Generalized Variances. Fisher's 
^-distribution in which z = J log s£/s£, where s£, and s£ are two 
independent estimates of variance, is much used in the analysis 
of variance for univariate populations. Put u = s£ /s? = e2z. It is 
this u which Wilks has generalized into ^ = £A?> where £ and rj 
are generalized variances for two samples from populations of 
n variables for which the generalized variances are given. He 
then developed the distribution function of ^, and, in particular, 
the distribution function of \p for the bivariate population as a 
special case. 

8. Generalized Correlation Ratio. Consider p samples 
£00,03 = 1,2, • • • , p), of Np items respectively drawn from a nor­
mal population of one variable. Let xp and Sp2 be the mean and 
variance of cop. Let £2 be the sample formed by pooling the co's, 
and let its mean and variance be denoted by X a n d S2, respec­
tively. Then the correlation ratio, rj, for the p categories, as de­
fined by R. A. Fisher, is given by 

* Solomon Kullback, An application of characteristic functions to the distribu­
tion problem of statistics, Annals of Mathematical Statistics, vol. 5 (1934), pp. 
263-307. 
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(i2) '•-'" „s. - ( !* • -* ) • 
this being a weighted variance of the means of p sub-samples 
(arrays) divided by the variance of Q. To generalize (12), con­
sider the p samples co/, (j8 = l, 2, • • • , p), oi n$ items drawn 
from an w-variate normal population. Let the sample formed by 
pooling the drawings be 0 ' with YlnP = N items. Then the gen­
eralized rj2 may be written 

I a a I 

where 

\ p __ __ 
bij = bji = — 2 ^ W/3(̂ t/3 — Xi)(Xj(3 — Xj) , 

iV 0«i 

and 

1 *> w 0 __ ___ 

#</ = an = — 2Ü 2J (xm — Xi)(xjpk — Xy), 
N 0=1 fc-i 

where X ^ is the mean of the ith variate in the /3th sample and 
X0k is the value of the &th individual of the ith variate in the /3th 
sample, co/. 

The distribution function of U is found. The integrations are 
carried out for n = 1 and yield the well known results of R. A. 
Fisher and of Hotelling for the distribution of rj2. We may write 
aij — bij+Cij, where 

\ V »/3 

Cii = — 2^ 2 j (x0k •— Xip)(%wk — Xjp). 

It is shown that W= |c»j | / |a*j | may be regarded as a gen­
eralization of 1 — 7j2j and the distribution function of TV is found. 
For n = 1, the integrations are carried out completely. Moreover, 
it is shown that W serves as a maximum likelihood criterion, 
A#, of the type used by Neyman and E. S. Pearson. It turns out 
that a simple relation X# = Wnl2 exists, thus showing a simple 
connection among these fundamental statistical concepts. 



218 H. L. RIETZ [April, 

For samples from multivariate populations, Wilks* has de­
vised criteria of the Neyman-Pearson likelihood type for testing 
the following classes of hypotheses : 

(1) That a sample is from a normal population with a speci­
fied set of means. 

(2) That two or more samples are from populations having 
a common system of: (a) means; (b) variances and covariances; 
(c) means, variances, and covariances. 

(3) That several sets of variâtes are mutually independent. 
Wilks directs attention to the fact that all the criteria he has 

considered may be called "Studentized" functions by which he 
means that the criteria and their probability functions are com­
pletely expressible in terms of observations. 

PART II 

RANDOM SAMPLES FROM SOME NON-NORMAL 

PARENT POPULATIONS 

9. Non-Normal Parent Populations. I t is fairly obvious that 
many of the samples used in the application of statistical coeffi­
cients or ratios are drawn from non-normal parent populations 
that differ very much from normal populations. Moreover, a 
small sample is almost sure to be inadequate to give information 
essential to pass a reasonable judgment about the type of parent 
population. This situation suggests the importance of learning, 
if possible, how far departures from normality in a parent popu­
lation influence the distribution of statistical estimates such as 
the mean, the variance, and the "Student" ratio used to decide 
whether a sample belongs to a given parent population. 

We shall consider first a few non-normal parent populations 
for which the exact form of the distribution function of the 
mean, standard deviation, or "Student" ratio has been found. 
Incidentally, in some cases, we shall comment also very briefly 
on the exact distributions of some other averages such as the 
median, harmonic mean, geometric mean, center, or variance, if 
time and space permit. Later, we shall discuss briefly thé progress 
that has been made in characterizing the distributions of x, s2, 
and %/s for samples from various types of parent populations by 
means of theoretical moments and by experimental sampling. 

* S. S. Wilks, Test criteria for statistical hypotheses involving several variables, 
Journal of the American Statistical Association, vol. 30 (1935), pp. 549-560. 
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10. On Exact Distributions of Some Averages f or Samples front 
Certain Non-Normal Parent Populations with Special Reference 
to the Mean x. For a continuous rectangular parent population 
given by y = 1/a from x = 0 to x = a, (a > 0), the distribution func­
tion of x for samples of N items consists of N polynomials, 
each being of degree iV—l, and each being applicable to a sub-
interval of length a/N. The curve is bell-shaped and resembles 
the normal curve when N^3. For N = 2, the curve degenerates 
into the two equal sides of an isosceles triangle. 

I t seems nearly certain that Laplace* knew the distribution of 
means of samples of N items, each drawn from a continuous 
rectangular universe; for he knew the exact frequency function, 
f{u)y of the sum u = Xi+x2+ • • • +XN of N elements, each Xi 
being a real number taken at random from a given interval 0 to 
a, (a>0), of a rectangular universe, and it is a small step from 
this distribution of u to the distribution of the corresponding 
mean x, where x = Nu. Laplace applied the distribution function 
of u to the solution of the historic problem of the probability 
that the inclinations of the orbits of the ten planets besides the 
earth known at the beginning of the year 1801 do not constitute 
a random distribution. Perhaps it would not be without some 
interest to remark that the distribution formula for the sum, u, 
of N elements drawn at random from a rectangular universe as 
described above, has again appeared in 1936 in an up-to-date 
problem f in a paper by Condon and Breit, on the energy distri­
bution of neutrons. The distribution of means of samples drawn 
from a continuous rectangular universe was given in explicit 
form by IrwinJ and by Hall§ in 1927. 

In 1929, Rider|| developed the exact distribution function of 

* See H. L. Rietz, On a certain law of probability of Laplace, Proceedings, 
International Congress of Mathematics, Toronto, vol. 2 (1924), pp. 795-799. 

t E. U. Condon and G, Breit, The energy distribution of neutrons slowed by 
elastic impacts, Physical Review, (2), vol. 49 (1936), No. 3, p. 230. 

% J. O. Irwin, On the frequency distribution of the means of samples from a 
population having any law of frequency with finite moments, with special reference 
to Pearson's Typeïl, Biometrika, vol. 19 (1927), pp. 225-239. 

§ Phillip Hall, The distribution of means of samples of size N drawn from a 
population in which the variate takes values between 0 and 1, all such values being 
equally probable, Biometrika, vol. 19 (1927), pp. 240-244. 

|| P. R. Rider, On the distribution of ratio of mean to standard deviation in 
small samples from non-normal universes, Biometrika, vol. 21 (1929), pp. 124-
143. 
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means of samples of four items drawn from a discrete five class 
rectangular parent population with x taking values from —2.5 
to +2 .5 . He found that third differences of the resulting proba­
bilities vanish except at x = Q, ±0.25. He fitted the probabilities 
by means of cubic curves, and also exhibited the results in tabu­
lar form. Similar results were obtained by using curves of degree 
one and two for samples of two and three items, respectively. 

The paper to which I have just now referred presents some 
exact distributions of medians and of some other averages for 
both discrete or continuous rectangular parent populations. 
However, it is concerned largely with exact distributions of 
"Student" ratios to be discussed later in this paper. E. L. Dodd* 
had given a formula in 1922, in terms of integrals, for the dis­
tribution of medians of samples from a rather general parent 
population, but Rider gave the results in explicit integrated 
form for the rectangular parent population. 

In 1920, Karl Mayrf developed a theory for the determina­
tion of the distribution of the sum of N items. He then applied 
the theory to the parent population given by </>(#) =^1"~a;l/2 for 
all real values of x. 

The determination of the distribution functions of sample 
means for the Pearson types as parent populations has been the 
subject of considerable investigation by several authors. 
A. E. R. Churchf seems to have been first to find the exact dis­
tribution of the mean, x, of samples from the Type III popula­
tion. He carried out the integrations. The resulting distribution 
function is a Type III curve. J. O. Irwin§ arrived a little later 
at the same result by a method that involves the use of integral 
equations and complex variables. He found also, in the form of 
an integral, the distribution of the means of samples from a 
Type II population, and evaluated the integrals in some special 

* E. L. Dodd, Functions of measurements under general laws of error, 
Skandinavisk Aktuarietidskrift, vol. 5 (1922), pp. 132-158. 

f Karl Mayr, Wahrscheinlichkeitsfunctionen und ihre Anwendungen, Monats-
hefte für Mathematik und Physik, vol. 30 (1920), pp. 17 43. 

I A. E. R. Church, Means and squared standard deviations of small samples 
from any population, Biometrika, vol. 18 (1926), pp. 321-394. 

§ Loc. cit., pp. 225-239. 



I937-I TOPICS IN SAMPLING THEORY 221 

cases. In 1929, C. C. Craig* obtained the distribution of sample 
means from a Type III parent population by the use of semi-
invariants of Thiele. In 1930, G. A. Bakerf found the distribu­
tion function of means, x, of samples of N drawn from a parent 
population defined by the first m — 1 terms of a Type A Gram-
Charlier series 

f(x) = a0</>o(» + aZ(t>z{oc) + • • • + am<t>m{oc), 

where 

<t>i{oc) = — -
dx% 

In 1931, C. C. Craig J arrived at Baker's results in a very few 
steps, by use of the semi-invariants of Thiele. In 1931, Rider § 
gave the distributions, in tabular form, for means of samples 
drawn from triangular and from ^/-shaped populations. 

In 1932, A. T. Craig|| classified probability functions,/(x), of 
the parent populations from which samples are drawn, into 
three classes according as x is allowed the range ( — °o, °° ), 
(0, oo), or (0, A), A >0 . Craig then established general theorems 
by which the problems of finding the distributions of arithmetic 
means, harmonic means, geometric means, medians, quartiles, 
and deciles are reduced to problems of integration. The illus­
trative parent universes for which integrations were carried out 
for the arithmetic mean, for some or all values of N, are given 

* C. C. Craig, Sampling when the parent population is of Pearson's Type I I I , 
Biometrika, vol. 20 (1929), pp. 287-293. 

t G. A. Baker, Distribution of the means of samples of n drawn at random 
from a population represented by a Gram-Charlier series, Annals of Mathematical 
Statistics, vol. 1 (1930), pp. 199-204. See also B. H. Camp, Problems in sam­
pling, Journal of the American Statistical Association, vol. 18 (1923), pp. 964-
977. 

| C. C. Craig, Note on the distribution of means of samples of N drawn from 
a Type A population, The Annals of Mathematical Statistics, vol. 2 (1931), 
pp. 99-101. 

§ P. R. Rider, On small samples from certain non-normal universes, Annals of 
Mathematical Statistics, Vol. 2 (1931), pp. 48-65. 

|| A. T. Craig, On the distribution of certain statistics, American Journal of 
Mathematics, vol. 54 (1932), pp. 353 366. 
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by assigning to the parent population, ƒ (x), the following special 
forms : 

(2) 

(3) 

(4) 

(5) 

The integration for (4) is carried out for N = 2, 3, and 4 
only, and that for (5) is carried out for N = 2 only. For the dis­
tributions of harmonic means, geometric means, medians, and 
ranges, a somewhat similar set of illustrations is given for which 
integrations are carried out. 

To illustrate, for the median, the integrations were carried 
out for the following besides the rectangular distribution : 

f{x) = - , 
a 

k 
fix) = —*-•'», 

fix) = kx~l'2e-x'2, 

k 
fix) =—e-l* l /2 ; 

4x 
ƒ(*) = —t, a2 

4 

a2 

(0 g x û a), 

(0 ^ x < oo), 

(0 S oc < oo ) , 

( - c o < x < co), 

(0 S x g a/2), 

(a/2 ^ x S a). 

ƒ 0 ) = — e~ 

2x 
ƒ(*) = -7> a2 

ƒ(*) = e"*, 

1*1/* > ( - oo < x < oo), 

( O g ^ ö ) , 

(0 ^ x < oo). 

In 1934, Baten* found in explicit form, the distribution func­
tion for the sum of N independent items of a sample from a 
parent population defined by (1/(2A)) sech (irx/(2h)). 

In a paper of 1935,f Weida developed the distribution func-

* W. D. Baten, The probability law for the sum of n independent variables, 
each subject to the law (l/(2h)) sech (irx/(2h)), this Bulletin, vol. 40 (1934), pp. 
284-290. 

t F . M. Weida, On certain distribution f unctions when the law of the universe 
is Poissons1 First Law of Error, Annals of Mathematical Statistics, vol. 6 
(1935), pp. 102-110. 
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tion for the samples of N items for the parent population 

k 
ƒ 0 ) = — 0-1*1/*, ( — oo < x < oo), 

(7 

in explicit form, for any value of N. The development was car­
ried out by the use of characteristic functions. 

11. On Some Exact Distributions of Standard Deviations. With 
respect to exact distributions of sample standard deviations, s, 
from non-normal parent populations, Rider* found, for samples 
of 2 items, the distribution function of s to be f(s) =4(1—2s), 
when the drawings are from the rectangular parent universe 
given by y = 1 from x = 0 to x = 1. 

Rietzf found the exact distribution function of the standard 
deviation of samples of 3 drawn from a rectangular parent popu­
lation given by y = 1/a from x = 0 to x = a to be 

6-31 '2 a 
f(s) = — (wa - 3s6i!2)s when 0 ^ s ^ — 61/2, 

a3 6 
18 r /a2 \ 

f(s) = — - a31*2 arc cos I —- - 1 J + 2(18s2 - U2)1'2 

+ — a3x/2 - 3s21'2 when — 61/2 < s < — 21'2, 
3 J 6 ~ " 3 

where s is the standard deviation of samples. 
I t is easily shown that there is continuity both in the two 

curves and in their slopes at the junction at s = a61/2/6. We may 
note that the distribution curve for the interval 0 to a6lf2/6 on 
s is a parabola, but the distribution curve for the interval #61/2/6 
to a21,2/3 on s is a transcendental curve with a rather compli­
cated equation. When a =4 , we find 98.86 per cent of the area 
under the curve is under the parabola to the left of the ordinate 
s=a6ll2/6 at the junction with the more complicated curve. 

Riderf directed attention to the fact that several of the es-

* Loc. cit., p. 141. 
f H. L. Rietz, Note on the distribution of the standard deviation of sets of three 

varieties drawn at random from a rectangular population, Biometrika, vol. 23 
(1931), pp. 424-426. 

X Loc. cit. (1929), p. 139. 
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timates of parameters (mean, median, range, and extreme av-
verage) in samples from a rectangular universe are distributed 
in accord with polynomials, which are, apparently, of degree one 
less than the number in the sample. This rule still holds for the 
distribution of the standard deviation from two items and for 
the major portion of the range for the case of three items. It 
seems natural to surmise that the distribution of s from N items 
may be a polynomial of degree N— 1 for a part of the range on s 
starting at zero. My attempts to prove or disprove this conjec­
ture have been unsuccessful. However, I shall present a bit of 
experimental evidence that the distribution of s for samples of 
four items drawn from a rectangular population is a polynomial 
of degree 3 for an interval at the left end of the range. Using 
Tippett 's Random Numbers, we* drew 400 samples of 4 items 
each from a rectangular distribution with 19 class intervals, and 
obtained the following distribution of standard deviation s: 

s Frequency s Frequency 

0.000-0.249 
0.250-0.499 

0.500-0.749 
0.750-0.999 

1.000-1.249 
1.250-1.499 

1 
5 

5 
15 

24 
24 

2.500-2.749 
2.750-2.999 

3.000-3.249 
3.250-3.499 

3.500 - 3.749 
3.750-3.999 

38 
42 

38 
20 

11 
3 

1.500-1.749 28 4 .000-4 .249 2 
1.750-1.999 44 ~ — 7 T T ~ " " T Z 7 — " 

total 400 
2 .000-2 .249 49 
2 .250-2 .499 51 

Without taking the space to discuss our scheme of testing this 
distribution, I will merely state that it turns out, when degrees 
of freedom are taken into account, that a third degree poly­
nomial will fit the first 12 class frequencies of the 17 shown 
above better than a fourth or fifth degree polynomial. This 
conforms to Rider's observation. 

* A. C. Olshen made the drawings. 
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In 1935, G. A. Baker* found the distribution function of the 
standard deviation for samples of 2 drawn from a parent popu­
lation given by the first three terms of the Gram-Charlier Type 
A, and the distribution function for the standard deviation of 
samples of 3 drawn from a parent distribution given by the first 
two terms of the Type A series. 

In 1932, A. T. Craigf found in the form of integrals the simul­
taneous frequency functions of x and s for drawings from a gen­
eral type of non-normal parent populations when N = 2, 3, or 4. 
The integrations were carried out in explicit form for several 
special functions when N = 2, and N — 3. 

12. On Some Exact Distributions of the "Student" Ratio. In his 
1929 paper,% Rider gave, in tabular form, the distributions of 
"Student" ratios for samples of 2, 3, and 4 items drawn from 
discrete rectangular parent populations of five classes, and also 
of ten classes for samples of 4. Some features of the distributions 
will be discussed later in this paper. Rider § gave also the dis­
tribution function of the "Student" ratio for samples of two 
items drawn from a continuous rectangular parent population. 
In 1931, he published|| the results of his study of samples from 
both triangular and U-shaped distributions. He drew the in­
ferences that the general characteristics of the ^-distribution 
from the U-shaped parent population resemble those for the 
rectangular population, that the negative skewness in the tri­
angular population tended to produce skewness of the opposite 
typelj in the distribution of the "Student" z, and that the cumu­
lative probability of | z\ , for the triangular population, tends to 
follow the results from a normal universe fairly well. 

* G. A. Baker, Note on the distributions of the standard deviations and second 
moments of samples from a Gram-Charlier population, Annals of Mathematical 
Statistics, vol. 6 (1935), pp. 127-430. 

t A. T. Craig, The simultaneous distribution of mean and standard deviation 
in small samples, Annals of Mathematical Statistics, vol. 3 (1932), pp. 126-140. 

% Loc. cit., pp. 124-143. 
§ An error in sign has been corrected by Victor Perlo. Reference cited later. 
|| P. R. Rider, On small samples from certain non-normal universes, Annals 

of Mathematical Statistics, vol. 2 (1931), pp. 48-65. 
TJSee Neyman and E. S. Pearson, loc. cit., Biometrika, vol. 20A (1928), 

p. 198. See also "Sophister", loc. cit., Biometrika, vol. 20A (1928), p. 408. 
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In 1933, Victor Perlo* found the distribution functions of the 
"Student ratio" as modified by R. A. Fisher, for samples of 2 
items, drawn from a rectangular parent population, to be 

2(1 + M )s 

for samples of 3, to be 

- 9 

(0 

/ 1 M \ 

V + 1 t* - 4 / 4(t+ l ) ( / 2 - 4 ) V + 1 
33/2(^2 + 2) (*2 _ 4)1/2 

+ — - tan"1 — — — — • , ( oo > / > 2), 
(i2 - 4)6'2 3l'*(t + 2 ) ~ ~ 
- 9 / 1 3t 

(ü) 
4(t + 1)(*2 - 4) 

/ 1 3t \ 

V + 1 fl - 4 / 

33/2^2 + 2) (4 - i 2 ) 1 ' 2 

+ tanh-1 ———-—, ( 2 è < è l ) , 
( 4 _ ^ 2 ) 6 / 2 3 1 ' 2 ( / + 2 ) 

31/2 

(iii) 
A 4 - *»/ 2(4 - <2)(1 - **)«* 

33/2^2 4 . 2) , , Z 1 - * 2 Y / 2 

(4 - f*)*' 

- Vr , ~, / l - / 2 V 

+ - I^r tanh-^—J , ( i ^ è O ) . 
The function (i), (ii), (iii), is continuous with continuous de­

rivatives except at t = ± 1/2. For these values of /, the derivative 
is discontinuous. When this distribution function is compared 
with "Student's" exact distribution for samples of 3 from a 
normal parent population, the frequency of values of the "Stu­
dent" ratio is greater at the ends and the middle, and less else­
where, when the parent distribution is rectangular than when it 
is normal. 

In bringing to a conclusion our comments on exact distribu­
tion functions, perhaps it should be said that it is not lack of 
interest, but only limitations of time and space that cause me 
to make my comments so brief on the contributions concerned 
with the distribution of averages other than the mean and 
standard deviation. No comments have been made on some 

* Victor Perlo, On the distribution of Student's ratio for samples of three 
drawn from a rectangular distribution, Biometrika, vol. 25 (1933), pp. 203-204. 



I937J TOPICS IN SAMPLING THEORY 227 

very interesting cases. Among these are the exact explicit dis­
tribution functions which Neyman* and E. S. Pearson found, 
from a rectangular parent population, for the distribution of 
range, center, and ratio of deviation of sample center from popu­
lation center to the semirange. 

13. Investigations of the Distributions of x and s2 by Moments 
and by Experimental Sampling. In 1928, Church f contributed 
some experimental sampling investigations that are especially 
important when viewed as an at tempt to make use of theoretical 
moments of mean and variance to obtain Pearson frequency 
curves to serve as distribution functions of the mean and vari­
ance. He found the distribution of the means of samples of 10 
drawn from two infinite skew populations and from one finite 
population. In his interpretation of the results, he emphasized 
the strong tendency of the distribution of the means, x, to as­
sume an approximately normal form, and gave a method of pre­
dicting rather rapidly the Pearson type to which the distribu­
tion of x is likely to approximate in the case of samples drawn 
from an infinite supply. Later, in a study of means of samples 
from a £/-shaped parent population, HolzingerJ and Church 
found that the distribution of means, #, in samples of N ob­
tained by sampling from a [/-shaped population is quite un­
satisfactorily represented by a simple continuous curve until N 
is at least of the order of 50. I t is further inferred that this effect 
is due mainly to the fact that when N is quite small, the dis­
tribution of x is likely to be composite in form. Returning to 
the part of Church's work on sample variance, s2, we observe 
that it was inferred that the distribution of s2 from the samples 
of 10, from the infinite supply, for each of the two populations 
may be described by Pearson curves in a manner useful for 
applied statistics. 

"Sophister"§ extended the experimental work of Church by 

* Neyman and E. S. Pearson, On the use and interpretation of certain test 
criteria for purposes of statistical inference, Biometrika, vol. 20A (1928), pp. 
175-240. 

t Loc. cit., pp. 321-394. 
% K. J. Holzinger and A. E. R. Church, On the means of samples from a 

U-shaped population, Biometrika, vol. 20A (19^8), pp. 361-388. 
§ "Sophister", Discussion of small samples drawn from an infinite skew 

population, Biometrika, vol. 20A (1928), pp. 389^123. 
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giving the distribution of variance for samples of N = 5 and 
iV = 20 items drawn from a Pearson Type III population differ­
ing much from a normal population. He inferred that the dis­
tribution of variances was adequately described by a Type VI 
curve. Attention may be called to the fact that Karl Pearson 
devised an equation for the distribution function of variances 
by assuming a Type VI curve which starts at zero and has its 
origin at zero, thereby using the constants of the population 
sampled only up to /34. 

In 1931 Le Roux* gave a numerical and graphic analysis of 
the formulas for the moments of variance with special reference 
to the relations among the jo's with a view to obtaining suitable 
Pearson curves to represent the sampling distributions of statis­
tics in the case of parent populations which can themselves be 
represented by Pearson curves. By this analysis light was 
thrown on the manner in which the variance distribution 
changes as the character of the population and sample size 
change. The methods were tested on twenty-one experimental 
distributions of s2, among which are included "Sophister's" sam­
ples of 5 to 10 items, and Church's samples of 10 for one popula­
tion. The inference is drawn that Karl Pearson's fixed start 
method of fitting the distribution of s2 is satisfactory, giving for 
"goodness of fit" tests an average of P = 0.49, whereas the four 
moment method of fitting may be quite unsatisfactory or even 
impossible in cases of small samples. 

14. More About the "Student" Ratio. An investigation of the 
"Student" z from samples drawn from the skew populations 
used by "Sophister",f showed that the distributions of z were 
markedly skew. Nevertheless, he concluded that the value of 
"Student's" Table in practice is still indicated, even when the 
parent population is definitely skew. 

It has been clearly shown by Shewhart that the theory of 
small samples is useful in applications to the quality control of 
manufactured articles. ShewhartJ and Winters found, largely 

* J. M. Le Roux, A study of the distribution of variance in small samples, 
Biometrika, vol. 23 (1931), pp. 134-190. 

f Loc. cit., p. 408. 
X W. A. Shewhart and F. W. Winters, Small samples—new experimental re­

sults, Journal of the American Statistical Association, vol. 23 (1928), pp. 144 
153. 
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on the basis of experimental sampling, that the "Student" the­
ory gives a marked improvement, for small samples, over the 
classical theory, but they indicated further that the "Student" 
procedure fails, in certain practical cases, to give a set of errors 
in means consistent with the actual errors they obtained from 
small samples. For the results in cases of sampling from both 
rectangular and triangular populations, part of the effect is 
traced to the correlation between x and s2, and part to the de­
parture of the distribution of s2 from what it would be if the 
parent distribution were normal. Briefly stated, the probability 
that a value of z from observation will fall outside a prescribed 
interval from — Z\ to + Zi is likely to be larger than the estimate 
from "Student's" probability tables, if the numerical value of z\ 
is of moderate size, say in the neighborhood of 2 or more. 

In 1929, Rider* gave further explanation for the failure of the 
"Student" probability tables to yield probabilities that would 
check well with the Shewhart and Winters experiments. After 
studying several types of parent populations, but especially the 
rectangular type, he also attributed the failure largely to the 
correlation between % and s2 in the cases of non-normal parent 
distributions. In general, his results showed not only a greater 
number of numerical values of z outside an assigned interval 
— Z\ to 2i, as in the experiments of Shewhart and Winters, but 
also a greater clustering of numerical values of z about the popu­
lation mean f than in the case of a normal parent population. 

In 1929, E. S. Pearson J threw further light on the sensitive­
ness of values of the "Student" z so far as they concern the 
fundamental tests dealing with the means of samples, and the 
differences between means of two samples. He investigated the 
question as to how well the observed distributions of z, from a 
variety of non-normal populations, follow the "Student" theory 
based on a normal parent population. For a set of non-normal 
parent populations, the following classes of data were selected 
with O ^ 0 i ^ . 5 : 

* Loc. cit., pp. 124-143. 
f See Victor Perlo, loc. cit. 
} E. S. Pearson, The distribution of frequency constants in small samples from 

non-normal symmetrical and skew populations, Biometrika, vol. 21 (1929), pp. 
259-286. 
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1000 samples of 2 from 7 populations with 1.8^02^7.07, 
500 samples of 5 from 6 populations with 2.5 SfizS 7.07, 
500 samples of 10 from 7 populations with 2.5^02^7.07, 
500 samples of 20 from 6 populations with 2.5 ^ / 5 2 ^ 7.07. 

The inference is drawn that a completely satisfactory analysis 
of the position of the "Student" z-test will only be possible when 
the theoretical distribution of % in samples from the non-normal 
parent population in question is found. It seems to the writer 
that the probable date of finding such exact distributions, for 
rather general skew parent distributions, is far in the future. 
However, the experimental results reported in E. S. Pearson's 
excellent paper and elsewhere suggest some inferences as to the 
nature of departures of the distribution of z from that of the 
normal theory with sampling from a fairly wide range of popu­
lations. The least satisfactory agreement seems to occur in the 
cases of extremely leptokurtic parent distributions. 

In concluding these remarks on the distribution of certain 
averages and ratios, for samples from non-normal parent popu­
lations, it seems fairly obvious that it is easy to propose a simple 
sounding problem by merely asking for the distribution function 
of some statistic for samples drawn from a simple parent popu­
lation, but it is usually very difficult to solve the problem. On 
this account, we know relatively little at present of all we wish 
to know about the exact distributions of statistics for samples 
drawn from non-normal parent populations. 

Although the prospects of obtaining the exact distribution 
functions of such statistics as the standard deviation, s, or the 
"Student" ratio, z, for samples from a considerable variety of 
non-normal populations, do not seem promising, nevertheless, by 
the use of moments of moments, and experimental sampling, 
along with the exact determination of some distribution func­
tions, significant contributions are being made towards an un­
derstanding of the probable nature of certain important fea­
tures of the distributions in question. 
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