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e, x>0,
U<x7 y) = 1) ¥ = O;
e, x2<O0.

The analogs of Theorems 3 and 5 in three or more dimen-
sions require methods other than those developed in the present
note, and are postponed for another occasion.
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1. Introduction. The chief result concerning the subject of
this paper is due to Lebesgue™ and can be formulated as follows:

If {f.(8)} is a sequence of functions defined and integrable in
J=(0, 1) and if for every measurable set e c J

(1) lim f fu(d)dt = 0,

then the sequence of indefinite integrals

@) [ ua

is uniformly absolutely continuous.

G. Fichtenholzt has shown that the same conclusion remains
true, if the equality (1) is satisfied for all open sets e.
S. Saks} considered the space R= {x} of the characteristic

* Sur les intégrales singuliéres, Annales de Toulouse, (3), vol. 1 (1909), p. 58;
see also Hahn, Uber Folgen linearen Operationen, Monatshefte fiir Mathematik
und Physik, vol. 32 (1922), p. 45.

t Theory of simple definite integrals depending on a parameter, Petrograd,
1918, p. 98 (in Russian) or Sur les suites convergentes des intégrales définies,
Bulletin de 1'’Académie des Sciences de Pologne, Sér. A, Décembre, 1923, pp.
115, 117.

1 On some functionals, Transactions of this Society, vol. 35 (1933), pp.
549-556.
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functions of measurable sets contained® in J, by introducing
the metric:

lall = [ w0 = mEGa) = 1), a9 = [ 120 — 30| ar.

He proved the following generalization of Lebesgue’s theorem:

If the equality (1) writien in the form
1
1) lim F,(x) = lim f fuOw(t)dt = 0,
n n 0

is satisfied for all points x belonging to a certain set H of the sec-
ond category in R, then the sequence of indefinite integrals (2) is
uniformly absolutely continuous, that is, the sequence of functionals

(27 F.(x) =f Sfa(8) x(2)ds

s equally continuous in R, and F,(x)—0 for all xER.

G. Fichtenholz has stated the following problem: What is the
general characteristic of the sets H in R, such that the equal con-
tinuity of the sequence (2') follows from its convergence to zerot
on H? I shall study in particular the role of the category of H
in this problem.}

* The space R is complete but not linear. The sum of two elements of R,
x4y, exists if x(#)- y(£) =0, their difference x —y exists if x(¢)- y(#) =y(¢). (Here
as everywhere, all the equalities referring to the characteristic functions must
be satisfied almost everywhere.) Further on we shall not prove the existence
of sums and differences occurring in the text, since it is evident from the course
of reasoning. The zero in the space R is the characteristic function of the vacu-
ous set. Note also the equality ||x-+y|| =||%||+(|y]|. Obviously, J can denote
not only an interval, but every measurable set. We shall apply this statement
in §3.

t As he showed, the convergence to zero of the sequence (2’) on all the R
always follows from its convergence to zero on such a set H.

1 [Added in proof.] As Saks has kindly pointed out to me, the totality
of all the open sets considered by Fichtenholz is of the first category in R.
Nevertheless, it seems to me that the example stated below is not without
interest.
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Without solving the problem stated above, I give in this paper
an example which shows that in any case the category H is
not the decisive factor in the question under consideration. Of
course it is not at all difficult to construct an example, of a set H
which is of the first category in R, but, being enlarged by all
the existing linear combinations of its elements, forms a set of
the second category in R. It is more natural, however, to con-
sider the set H as being additive (that is, such that every exist-
ing linear combination of its elements belongs to it again). We
shall prove the following statement.

THEOREM. If the equality (17) is satisfied for all points x belong-
ing to some spherical surface in R, S'(xo, 7), (r<1), which does
not pass through the point 0, then the system (2') is equally con-
tinuous in R and F,(x)—0 everywhere in R.

In general, the set H =.S(xy, 7) is not additive, but it is easy
to see that the additive extension of S(x, 7) is nowhere dense
in R.

2. Proof of Theorem. Let xo=0. Then the spherical surface
S(0, 7) consists of the points of norm 7. Let us suppose that
our assertion is wrong and that there exists a system (2') con-
verging to zero on S(0, 7), but not equally continuous. There ex-
ists an € such that, for every 6§ >0 and every integer N, R will
contain an element ¥ such that ||x|| <8 and | F,(x)| >e for a
certain # = N. Denote by H,, the set of points x of S(0, ) such
that | F,(x) | <¢/6 for n>m. Evidently all H,, are closed and as
ZTH,,,=S(O, 7), at least one of them, for instance H,,, is of the
second category in S(0, 7). Being closed, H,, contains in S(0, )
a sphere T(0, 7; &, p) or, more briefly, T (I consists of such
points x that ||x]| =7 and d(x, &) =p).

According to the assumption there exists in R an element x;
such that

1 —7

o] =en < —» e < ;<o
3 4

and for some v >m,, {F,(xl)l >e. For example, let F,(x;) > .
Consider an arbitrary element Z of the spherical surface
S(0, a;). Construct such an element z that z-4x; and 242

exist and are contained in 7. The method of construction de-
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pends upon the quantity =H (x1—|—92—x13':)£0H, which can be
equal to, greater, or less than .

In the first case z2=£, where £=§&,— (%, +% —x:1%) &o.

In the second case we put 2= £+, where 9 is the character-
istic function of a set of measure 8—au, lying in E.(&(¢) +x1(¢)
+x(¢) =0). It follows from 8 —o; £y and from

mE (o) + w:(8) + &) = 0) = 1 — (|&]| + [« + ||
1 —7 1 —7

1—r—2 = > ay,
3 3

Y

Y

=1—r—2a1

that such a set exists.

In the third case z=§—x, where x is the characteristic func-
tion of a set of measure oy —f lying in E,(£(¢) =1). It follows
from

mEER) = 1) = [|f| =2 7 — 2010 > @,

that such a set exists.
In each of these cases ||3]| =7 —a; and d(z, £) < 30u. Evidently
2 satisfies the conditions indicated above. Then

Fy(z+ %) = F,(z) + F.(x1),  Fu.(z+ &) =F,(z) + F.(%);

Fy (%) =F,(z+ %) —F.,(2) =F.,(z+ & — F.(z + %) + F.(x1).
As z4x€ 7T and z+ €T, the first two members of the right part
of the last equality are numerically <e/6, whence F,(Z) >4¢/6.

Note that % is an arbitrary element of S(0, a;). Let oz be the
least non-negative residue of # mod ay, that is, r = ka1 +as, (k1 a

positive integer, 0 =ae <ay). Then &, can be represented in the
form

fo=%1+%2+"‘+%k1+x2,

Ui

where u;-u; =0, (i%5), #x2=0, | =, and ||| =aw.

We have
F(x5) = F,(k) — F,(ur) — -+ - — Fy(us,).
Since | F,(£0)| <e/6 and F,(u;) Z4¢/6, we have

€ 4e 3e
F.,(xg) <€— kl—'é —_—

6 6
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Repeating for x; and .S(0, «s) the reasoning given for x; and
S(0, a1), we find for x&S5(0, az), F,(x) < —¢/6.
Dividing ay by s, we obtain

a1 = kacis+ a3, (k2 a non-negative integer, 0 a3 <ay).

If x€S(0, as), then adding to it k; suitably selected elements

v1, U, - -+, Ui, Delonging to S(0, as), (v;-v;=0, when 257, and
v;-x =0), we obtain an element y&€S5(0, a1). Then

F,(x) = F,(y) — F.,(v1) — - -+ — F,(vs,),
and

4e € Se
Fv(x)>_6—+k2_'—>~_'

6 6
Divide a; by a3, and so on. If 7 and «a; are incommensurable,
we shall obtain a sequence of spheres S(0, o) converging to
zero, where

on S(0, a1), F,(x) >4¢€/6,
on S(0, az), F,(x) < —¢/6,
on S(0, as), F,(x) >5¢/6,
on S(0, o), F,(x) < —6¢/6,
on S(0, as), F,(x) >11¢/6,

and so on. Such a result contradicts the continuity of F,(x).

If » and oy are commensurable, a certain o, will be a divisor of 7.
Then

fo=wi+ w2+ -+ w,

where w;-w; =0, (457), and w,€S5(0, o), (¢=1,2, - - - ,N). The
numbers F,(w;) have the same sign for every ¢ and | F,(w;)| >¢/6.
Consequently, |F,,(£g)| >¢/6, which is impossible, since » >m,
and £y H,,,. Thus the system (2) is really equally continuous.

Thus every sequence (2’), which satisfies condition (1) on
S(0, 7) is equally continuous. Hence it follows that such a se-
quence converges to zero everywhere®* on R, according to the
general assertion.

* The reader sees that as far as it concerns the spherical surface S(0, 7) with
the center at the point x=0, the proof will not have to be changed consider-
ably if we suppose that H, although not coinciding with S(0, ), is of the second
category in S(0, 7).
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3. Application of Functionals. Now let S(xo, #) be any spheri-
cal surface which does not pass through 0 and suppose that,
for x&S(xo, 7), lim, F,(x) =0. Note that every spherical surface
in R has two centers and divides the whole space into two
spheres, that is, that S(x,, #) =S(1 —x,, 1—7). Suppose that x
is that one of the two centers whose norm is greater than the
radius.

For further reasoning it is necessary to show that F,(x,)—0.
For that purpose consider the set of points x&€S(xo, 7) for
which x-x¢=x and denote it by S’. If we introduce the set
J'=E(x(¢) =1), then S'=5'(0, Hx” —r7) is a spherical surface
with the center at 0 and with radius ||x¢| —7 in the space R’
of characteristic functions of measurable subsets of J’. Since
reasoning in §2 remains valid when J’ is substituted for J, we
have F,(x)—0 everywhere in R’ and in particular at the point x,.

Any element x€R can be represented in the form x =x,—u(x)
+o(x), where u(x) =x0(1 —x) and v(x) =x(1 —x,). Let us define
a one-to-one and bicontinuous transformation of R into itself
according to the formulas

y = ¥(x) = u(®) + v(x) = xo(1 — x) + (1 — xo),
% =V1(y) = %y — yxo + y(1 — x).

In this way S(xq, 7) is transformed into S(0, 7).
Further define in the transformed space the sequence of func-
tionals {®,(y)} on putting

Fn(x(l) !
(A) Pu(y) = Fa(x) — 77— | xo())x(t)dt.

ol

If we remember the definition of F,(x) and express x in terms
of v, we easily find that the functionals ®,(y) have the form re-
quired,

®,(y) = fo 2. () y(2)dt.

Since F,(x¢)—0 and F,(x)—0 on S(x,, 7), we conclude from
the equality (A) that ®,(y) converges to zero on S(0, 7). Apply-
ing the result of §2 to the sequence {®,(y)}, we see that
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®,(y)—0 everywhere in R. Since the transformation is one-to-
one, it follows from the formula (A) that F,(x)—0 everywhere
in R.

Note that the statement made in §1 is not true for a spherical
surface which passes through zero, S(xo, ||%o||). This we can
prove on putting

Fu(x) = nfol[xo(t) — (1 = @) |x(@dt.
Let x€.S(x0, ||29|); x =% —u~+v and
|| = d(, %) = foll x(t) — wo(t) | dt
= f01| — u(t) + o(t) | dt

- fl [u(t) + v(t) Jat = ||| + [|]],

0

that is, |[xo—u||=||2|]. According to definition, xo—u=ux x
and v=x(1—x,). Consequently for such an x, F,(x)=0, for
n=1, 2,---. At the same time the sequence {F,,(x)} is by

no means equally continuous in R, as IFn(x)l——wo for every
x non-€ S(xo, ||%]).

4. Remark. In the paper of Saks mentioned above there are
some vague points in the proof of Lemma 4. This refers to the
way he motivates the inclusion (on page 553)

HecH, +Hy+ ---.

The lemma itself is not true, at least for the space R, as is shown
by the example of the following sequence of transformations:

E(x, 1) = nx(d).

Moreover, the assertions of Theorems 3 and 4 are not true in
so far as they refer to R, as is seen from the same example.
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