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A MEAN VALUE T H E O R E M FOR POLYNOMIALS 
AND HARMONIC POLYNOMIALS 

BY J. L. WALSH 

1. Introduction. We define a polynomial in z of degree n as any 
function that can be expressed in the form aoZn+aiZn~l+ • • • 
+an\ we do not require ao^O. With this definition the following 
theorems are valid, as is our purpose to show in the present 
note: 

THEOREM 1. If f{z) is an analytic function of z for the value 
Z = ZQ, then we have 

u_ f(zo + h) + f(z0 + * > * ) + • • • + /(so + co*-1*) - Nf(zp) 

hN 

f(N)(z0) 

(N-l)\' 

where co denotes the number e2irilN. 

A function ƒ(z) is said to have the polygonal mean value prop­
erty or more simply the mean value property if for fixed N and 
for every Zo the value of ƒ(ZQ) is the mean of the values of ƒ(z) 
at the vertices of every regular polygon of N sides whose center 
is20. 

THEOREM 2. A necessary and sufficient condition that a function 
analytic for all values of z have the mean value property is that it 
be a polynomial of degree N—l. 

THEOREM 3. A necessary and sufficient condition that a real 
function f (z) =u(x, y) continuous f or all values of z ( = x-\-iy) have 
the mean value property is that it be a harmonic polynomial of de­
gree N—l. 

A harmonic polynomial in x and y of degree N— 1 is defined 
as the real part of a polynomial in z of degree N—l. 

2. Proof of Theorem 1. In preparation for the proof of Theo­
rem 1 we first formulate a following well known and easily 
proved lemma. 

(i) 
h-+0 
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LEMMA. If œ denotes the number e2iri,N, the sum l+com+co2m 

-f- • • • -\-Q)W-i)m j i a s tfa vaiue N or 0 according as m is or is not 
a multiple of N. 

The result is obvious if m is a multiple of iV; in the contrary 
case we need merely write 

1 - wNm 

1 + œm + a>2m + • • • + ^N~1)m = = 0. 
1 - œm 

Let the function /(s) be analytic at the point So, hence ana­
lytic at every point interior to some circle whose center is s0. 
At every such point the Taylor development 

/'(so) f"(zo) 
f(zo +h)^ /(so) + ^~~ h + J - ~ * « + . - . 

is valid, hence by the lemma the relation 

/(s0 + h) + / (s0 + c*A) + • • • + /(so + uN~i)h - Nf(zo) 

(2) |7W(*o) f(2N)(zo) / ( W (*o) "1 
s= N\ — hN + — h2N + — h™ + • • • 

L NI (2N)l (3N)l J 

is also valid. Theorem 1 follows at once from (2), by well known 
properties of power series. 

The special case N = 2oî Theorem 1 is included in some recent 
results on real polynomials due to Anghelutza* and Whitney;f 
the latter writer also gives the corresponding special case of 
Theorem 2. Both Anghelutza and Whitney deal primarily with 
the study of difference equations, whereas the present properties 
involve the study of ^difference equations. 

3. Proof of Theorem 2. Every polynomial ƒ (s) =aoZN~1+aiZN~2 

+ • • • +öjv~i has the mean value property, for by (2) we may 
write for every z0 and h 

(3) /(so + h) + /(so + œh) + • • • + /(so + co^h) ss Nf(zo), 

which is the mean value property. I t is surprising that this sim­
ple property of polynomials (also a direct consequence of La­
grange's interpolation formula) is not well known; the writer 

* Mathematica, vol. 6 (1932), pp. 1-7. 
t This Bulletin, vol. 40 (1934), pp. 89-94. 
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knows of no explicit statement of it in the literature ; the prop­
erty is contained implicitly in a recent paper by J. H. Curtiss.* 

Let f(z) be a function analytic for all values of z, which has 
the mean value property. The fraction whose limit appears in 
the left-hand member of (1) is zero for every z0 and for all values 
of h different from zero. Consequently we have f(N)(z) = 0 , and 
f(z) is a polynomial of degree N—l. Theorem 2 is established. 

The trivial case N= 1 is not excluded in Theorem 2 ; the mean 
value property requires ƒ(z0) ==f(zo + h), whence ƒ(s) is a con­
stant. 

I t is worth remarking that the proof of f(N)(z) = 0 just given 
requires only that (3) should hold for real h\ that is to say, it is 
sufficient if the mean value property holds with reference to all 
regular polygons with one horizontal radius. Moreover the proof 
that fm(z) = 0 requires only that (3) should hold for each z = Zo 
for h sufficiently small; tha t is to say, it is sufficient if the mean 
value property holds for each Zo with reference to regular poly­
gons which are sufficiently small. Consequently if f(z) is analytic 
in a region and has the mean value property with reference to 
all polygons contained in that region, then in that region f(z) 
is a polynomial of degree N—l. 

If a function is analytic in a region and possesses the mean 
value property for given N for all sufficiently small polgyons of 
N sides in that region, the function also possesses the mean 
value property for all sufficiently small polygons of iV+1, 
iV+2, • • • sides in that region. 

Let a function ƒ(z) be analytic in the neighborhood of a fixed 
point Zo and possess the mean value property merely with refer­
ence to all sufficiently small regular polygons of N sides 
with center z0. I t follows then from (3) and (2) that we have 
0=fQn(ZQ)=ft*N)(ZQ)=fim(Zo) = . . . # Reciprocally, if ƒ(*) is 
analytic in a circle whose center is a fixed point Zo and if we 
have 0 =fN)(*o) = / ( W (*o) = / w ) (*o ) = • • • , then it follows from 
(2) and (3) tha t ƒ (z) has the mean value property with reference 
to all regular polygons of N sides with center z0 which lie in the 
given circle. 

4. Proof of Theorem 3. Let u(x, y) be a harmonic polynomial 
of degree N—l; the conjugate function v(x, y) is also a har-

* Transactions of this Society, vol.38 (1935), pp. 458-473; p. 462. 
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monic polynomial of degree iV—1, and the analytic function 
f(z)=u(xy y)+iv(x, y) is a polynomial in z of degree N—1. The 
f unction ƒ (z) has the mean value property (3). If we take the 
real part of both members of (3) we obtain the mean value 
property for u(x, y). 

An arbitrary function U(x, y) is said to have the Gauss mean 
value property if for every (x0, 3>o) the value U(xo, y0) is the mean 
of the values of U(x, y) over an arbitrary circumference whose 
center is (#o, yo). Every function harmonic in a region possesses 
the Gauss mean value property with respect to circumferences 
which together with their interiors lie in that region. Conversely 
[Koebe*], if a function U(x, y) is continuous in a region and has 
the Gauss mean value property with respect to all sufficiently 
small circumferences in that region, then U(x, y) is harmonic in 
tha t region. 

Let now u(x, y) be continuous in a region or throughout the 
entire plane, and possess the polygonal mean value property 
at least for sufficiently small polygons. Allow such a sufficiently 
small polygon to rotate rigidly about its center through an 
angle 2T/N; the average of u(x, y) over the entire circumscribed 
circle is the average of u(x, y) at the N vertices averaged during 
this rotation, and is therefore equal to the value of u(x, y) at the 
center of the circle. That is to say, the function u(x, y) possesses 
the Gauss mean property, at least with respect to sufficiently 
small circumferences, and hence is harmonic. 

Let v(x, y) be conjugate to u(x, y) (continuous and possessing 
the polygonal mean value property) in the given region or in a 
simply-connected subregion. Then f(z) =u(x, y)+iv(x, y) is 
analytic there. Let us use equation (1) where h is chosen as 
real. At an arbitrary point z we have 

dNu dNv 
ƒ<*>(*) = + i 

dxN dxN 

From the polygonal mean value property for u(x, y) it follows 
by Theorem 1 with h real tha t dNu/dxN (the real part of fiN)(z)) 
vanishes identically, so the function dNv/dxN conjugate to 
dNu/dxN either vanishes identically or is identically a non-
vanishing real constant. If dNv/dxN vanishes identically, so also 

* See for instance Kellogg, Potential Theory, 1929, pp. 224-228. 



1936.1 MEAN-VALUE THEOREMS 927 

does ƒ(JV) (z), and Theorem 3 is established. If dNv/dxN is identi­
cally a non-vanishing real constant q, we have f(N)(z) = iq, 

iqzN 

f(z) = w + «; = h ÖIZ^-""1 + a2z
N~2 + • • • + aN) 

we shall reach a contradiction. Let 2 = 20 be an arbitrary point 
of the plane or more generally of the region in which u(x, y) is 
assumed to have the polygonal mean value property. We write 

iq(z — Zo)N 

ƒ(*) = — p — + h(z - Zo)^1 + 62(2 - *o)N~2 + • • • + b». 

The real part of b\(z — 2 o)^ - 1 + 62(2 — z0)
N~2 + • • • + b^ is known 

to have the polygonal mean value property, hence the real part 
of F(z) =iq(z — Zo)N/N\ also has the polygonal mean value prop­
erty; this is not true as we see by setting z = z0+ah1 where h is 
real and positive and where a is an Nth root of — i; we have 

^(^o + ah) + F(z0 + acoh) + F(z0 + aœ2h) + • • • 

+ F(zo + aœN~'h) - NF(z0) = qhN/{N - 1)!, 

whose real part is not zero. Thus q7e0 leads to a contradiction 
and Theorem 3 is completely established. We have indeed 
proved more than the italicized theorem, for we have shown that 
the polygonal mean value property at each point of a region for 
sufficiently small polygons implies tha t u(x, y) is in that region 
a harmonic polynomial of degree N—l. 

5. Extensions of Theorem 3. We have seen that the polygonal 
mean value property for sufficiently small polygons for a con­
tinuous function u(x, y) implies that u(x, y) is a harmonic poly­
nomial of degree N—l. I t is essential here to assume u(x, y) 
continuous, as we see by the example 

{
1, x > 0, 

0, x = 0, 

- 1, x < 0, 

where N is even. At each point (x, y) the polygonal mean value 
property is possessed by this function for sufficiently small poly­
gons. Yet the function is not a harmonic polynomial. 
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The continuity of u(x, y) need not be assumed, however, if 
the polygons are not required to be small. More explicitly, let 
us indicate that ifu(x, y) {not assumed continuous but measurable 
and Lebesgue integrable both on every circumference and interior 
to every circle in R) has the mean value property at all points of a 
region R with reference to all N-sided polygons in that region, then 
u(x, y) is in that region a harmonic polynomial of degree TV—1. 
The polygonal mean value property yields the Gauss mean 
value property, as we have already seen. The Gauss mean value 
property implies by integration over the interior of any circle 
interior to R tha t the average of u(x, y) over the interior of any 
such circle is the value of u{x, y) a t the center of the circle. 
The latter property implies continuity of u(x} y). For let 
i V (#o, 3>o) be an arbitrary point interior to R and let D in 
R be the interior of a circle whose center is (xo, yo) and radius r0. 
Let Pk: (x/c, yk) be an arbitrary sequence of points approaching 
(#o, 3>o), and let Dk be (for k sufficiently large) the interior of a 
circle whose center is (xkl yk) and radius ro — P0Pk. Then Dk lies 
interior to D\ the radius of Dk approaches the radius of D; by 
Lebesgue's theorem the average value of u(x, y) over Dk ap­
proaches the average value of u(x} y) over D. Consequently 
u(x, y) is continuous at the point (xo, 3>o). Theorem 3 extended 
now implies that u(xy y) is in R a harmonic polynomial of 
degree N—l. 

6. Geometric Mean Values. It is not without interest to com­
pare our fundamental ^-difference equation (3) with the analo­
gous equation 

(4) <K*o + h)cj>(z0 + o A) • • • <K*o + c**-1*) s [«(so)]*, 

which expresses the condition that the value of the function 
<f>(z) at a point z0 is the geometric mean of the values at the 
vertices of a regular iV-sided polygon whose center is ZQ. Equa­
tion (4) reduces to (3) by taking the logarithms of both mem­
bers of (4), so we have by Theorem 2 and its extension : 

THEOREM 4. A necessary and sufficient condition that an analyt­
ic function <fr(z) have at every point Zo of a region the mean value 
property (4) for all values of h or for all h sufficiently small is that 
<j)(z) be identically zero or be of the form ep(*\ where p(z) is a poly­
nomial of degree N—l. 
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It will be noticed that it is possible to take logarithms in (4) 
in the neighborhood of a point z0 if <f>(z) is analytic, is not iden­
tically zero, and satisfies (4) ; if (4) is satisfied for every h suffi­
ciently small we cannot have </>(so) ~ 0 unless at least one of the 
factors in the left-hand member of (4) vanishes for every h 
sufficiently small ; in the latter case z0 is a non-isolated zero of 
<t>(z) and <t>(z) vanishes identically. 

Let now the real continuous function U(x, y) have the prop­
erty that its value at every point (x0, 3>o) is the geometric mean 
of its values at the vertices of every iV-sided regular polygon 
whose center is (x0, 3>o)- If U(x, y) vanishes at a single point 
(#i» yi)y it vanishes at every point, for we may choose a regular 
polygon of N sides whose center is (xo, yo) and which has a ver­
tex at (xi, 3/1). Even if the mean value property is restricted to all 
polygons which are sufficiently small, an extension of the 
method of proof of Theorem 4 will yield the corresponding re­
sult: 

THEOREM 5. A necessary and sufficient condition that a real 
continuous f unction U(x, y) have in a region or in the entire plane 
the property that the value at the center of every sufficiently small 
regular polygon of N sides is the geometric mean of the values at the 
vertices, is that U(x, y) be identically zero or be of the form ± euix'y^ 
(the lower sign is permissible only if N is odd), where u(x, y) is 
a harmonic polynomial of degree N—l. 

The trivial case U(x, y) = 0 is henceforth excluded. Let now R 
be the given region, and let Rf be one of the subregions of R 
obtained by deleting from R the points where U(x, y) vanishes. 
The function log U(x, y) or log [ — U(x, y) ] (according as U(x, y) 
is positive or negative in R') is continuous in R' and has the 
mean value property expressed by (3), so U(x, y) is of the form 
+ eu(x,y)^ w n e r e u(Xf y^ is a harmonic polynomial of degree iV—1. 
The function u(x, y) cannot become negatively infinite at any 
finite boundary point of R'', so U(x, y) does not vanish at any 
finite boundary point of R', and R' may be chosen identical 
with R. Theorem 5 is established. 

If the requirement of continuity is omitted, and if for each 
point only sufficiently small polygons are allowed, the conclu­
sion is false, as we see by the illustration (N even) 
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e, 

1, 
-1 

x > 0, 

x = 0, 

x < 0. 

Z70, ;y) = 

The analogs of Theorems 3 and 5 in three or more dimen­
sions require methods other than those developed in the present 
note, and are postponed for another occasion. 

HARVARD UNIVERSITY 

ON SEQUENCES OF I N D E F I N I T E INTEGRALS 

BY M. K. GOWURIN 

1. Introduction. The chief result concerning the subject of 
this paper is due to Lebesgue* and can be formulated as follows : 

If {fn(t)} is a sequence of f unctions defined and integrable in 
J= (0, 1) and if for every measurable set e c J 

(1) Hm f fn(t)dt = 0, 
n J e 

then the sequence of indefinite integrals 

(2) ƒ fn(t)dt 

is uniformly absolutely continuous. 

G. Fichtenholzf has shown that the same conclusion remains 
true, if the equality (1) is satisfied for all open sets e. 

S. Saks J considered the space R= {x} of the characteristic 

* Sur les intégrales singulières, Annales de Toulouse, (3), vol. 1 (1909), p. 58; 
see also Hahn, Über Folgen linearen Operationen, Monatshefte fur Mathematik 
und Physik, vol. 32 (1922), p. 45. 

t Theory of simple definite integrals depending on a parameter, Petrograd, 
1918, p. 98 (in Russian) or Sur les suites convergentes des intégrales définies, 
Bulletin de l'Académie des Sciences de Pologne, Sér. A, Décembre, 1923, pp. 
115, 117. 

J On some functionals, Transactions of this Society, vol. 35 (1933), pp. 
549-556. 


