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ON TRANSFORMATIONS OF DOUBLE SERIES

BY H. J. HAMILTON

1. Introduction and Definition of Notation. A double series
Zk‘f’l:lxkl may be classified according to the behavior of the
double sequence of its partial sums sklEfo,’j’:lxﬁ as follows.
The sequence {skl} is ultimately bounded (abbreviated ub) if
there exists a number Q such that sy; is bounded for all &, /> Q;
bounded (b) if in the preceding case Q can be taken to be zero;
convergent (¢) if limg, ;.5 exists (finite) ; bounded convergent (bc)
if both b and c¢; ultimately regularly convergent (urc) if ¢, and if
there exists a number Q such that limj,.s: and limj.,S
both exist (finite) for all 1> Q and all £ > (, respectively ; regularly
convergent (rc) if in the preceding case Q can be taken to be zero;
bounded ultimately regularly convergent (burc) if both b and wurc.

It is the purpose of the present paper to establish necessary
and sufficient conditions on the matrix ||b4/| in order that, when-
ever the series ) i ;-1% is of a specified one of the above types,
the transformed series D ;-1 x1:bs; will be of a specified one of
these types. The process of transforming will be indicated by an
arrow; “sufficient” will be abbreviated by S., “necessary” by N.
Thus N.b—c¢ reads “a condition (or set of conditions) necessary
that every bounded series have a convergent transform,” and
S.b—c¢ reads “a condition (or set of conditions) sufficient that
every bounded series have a convergent transform.”

Hardy* found conditions N. and S.r¢—r¢, and conditions
S.b—rc, and established relations (6) and (8) below. Kojimat
proved the necessity of Hardy’s conditions S.b—7¢, and dis-
covered conditions N. and S.c—¢. C. N. Moore} established
conditions N. and S.bc—bc¢ incidentally, in proving a theorem

* Hardy, On the convergence of certain multiple series, Proceedings of the
Cambridge Philosophical Society, vol. 19 (1920), pp. 86-95. This paper will
be referred to as H.

t Kojima, Theorems on double series, T6hoku Mathematical Journal, vol. 17
(1920), pp. 213-220. This paper will be referred to as K.

1 C. N. Moore, On convergence factors in multiple series, Transactions of
this Society, vol. 29 (1927), pp. 227-238. Let r=1, and fix @ and 8 in Moore's
Theorem 1.
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on Cesaro transforms of double series; the proof of (10) below is
based on a suggestion

by him.

/ The seven types of
/ series under consider-
\ ation are related as in
/ the diagram, where
\ bun the arrow indicates
implication of the
quality at its head by

that at its tail.

In §2 are listed the conditions to be used in the theorems;
§3 establishes various implications of these conditions; §4 is
devoted to necessity proofs, and §5 to sufficiency proofs. The
results of §§4 and 5 are tabulated in §6, it being noted that if
uc U, and v ¢ V, where u, U, v, V represent classes of series,
then S.U—wv is at once S.(#, U)—(v, V) (four cases), and
N.u—V is at once N.(u, U)—(v, V).

Frequent use is made of the following decomposition of double

sums, analogous to Abel’s partial sum formula for simple series,
and due to Hardy.*

rc

m,n m—1,n—1
O = Z Xribr = Z SkiA11br (a)
k=1 k=1
m—1
+ D Skaliobn ®)
1) i1
n—1
+ Z SmlAOIbml ('Y)
=1

Here sun EZ)’:’{LWM; AlobklEbkl—bk-H,l; A01bszbkz—bk,z+1; and
AubklEAlo(Aolbkz) =A01(A10bkl). The several parts Of the de-
composition are lettered for future reference.

2. Conditions.

() Z'Allbkl| =4 < o,
k=1

* Hardy, On the convergence of certain multiple series, Proceedings of the
London Mathematical Society, (2), vol. 1 (1903), pp. 124-128.
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(b) Z‘Alobkl' =B < »;

ZIAmbu‘ =(C < o,

k=1 =1
limA]_(]bkl=0’ (k=1’ 2,)’
l—>w
Cc
() lim Agybry =0, (I=1,2,---).
k—oo
AlObkl=0f0r l>Lk, (k=1’2,.)’
(c2)

Aoibry = 0 for > K;, (I1=1,2,---).
d) limby =0, (k=1,2,---); limby=0,(0=1,2--).
l—)m k’_’”

by = 0 for I > Jy,
(d2) kl k

bkl=0f01‘k>ll;
(e) limbkz=0.

k

M= o0

(k=1,2,---);
(l=172y"')'

3. Implications of the Conditions.
(2) (c2) tmplies (c1). (3) (dy) smplies (c1).
(4) (d2) tmplies (ca). (5) (dg) tmplies (d;).
(6) (a) and (b) smply

3| Avobui| = 4 + B,

k=1

ZlAOIbkll§A+C, (F=1,2,---).

1=1
(7) (a) and (b) imply the existence of
lim Ambkl, (k = 1, 2, e ); lim Ao1bkz, (l = 1, 2, R )

l—w k—o
(8) (a) and (b) imply
Do | lim Agebir| < 4 + B; Do lim Agidi | < 4 + C.
k=1| low 1=1! kow

(9) (a) and (b) imply that the sequence {bkz} s rc.
(10) (a) and (c1) tmply (b).
(11) (a) and (c1) smply

lim Z \ AOlbkll = 0.

k—® =1

lim Z| Aloblcl| = 0;

low k=1
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(12) (a) and (c1) imply that
liml..wbkl=limk,l-»oobkly (k=1’ 2: A )v

and that
]imk.,wbkz=limk,l.>wbkly (l=1, 2’ e )

(13) (a) and (d1) tmply (e).
(14) (a), (c1), and (e) imply (di).

Of these implications, the ones which are not obvious can be
proved as indicated below. (Where symmetrical results are
indicated, only the first is established.)

ProorF oF (6). This follows from the identity, for arbitrary ¢,

t—1
(15) 2 Aubk = Awbrr — Avobre, (B =1,2,---).
I=1
Proor orF (7). By (15),
(16) lim Awbyr = Aucbis = 2 A, (B =1,2,---).
— 0 =1

Proor of (8). This follows from (16).
Proor oF (9). This follows from the identity, for arbitrary

s and ¢,
s—1,t—1 s—1
Z Ayiby = Z (Arobrr — Avobre)
=1 =1

s—1
= > Asbgs — by + bes + by — bu

k=1
s—1 t—1

= Z Agobry + Z Aoy — b1y + b
k=1 1=1

ProoF or (10). Let ¢ be arbitrary. For any s, whatever be
r>t,

> | Agobre| = > | Agobrs — Alobkr| + Z‘ Arobir |
=1 k=1 k=1

8

-

k=1

+ > I Aoy |

k=1

r—1
Z A

I=t

A11bkl| + 2 | Aobgy | .

©
=2
k=1,1=t k=1
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Hence, by (c;) and the arbitrariness of s,

A7 2| Awbie| = Zl Agibr].

k=1 k=1,l=t

ProoF oF (11). Let ¢ tend to o in (17).
Proor orF (12). By (10), (9), and (c;), the sequence {bk;} is

rc, and
lim by = lim byy,g, (B=1,2,--+).

l>ew l—w

ProOF OF (13). See (3) and (12).
PRroOF OF (14). See (12).

4. Necessity Proofs. (Only the first parts of symmetrical
conditions are dealt with.)

THEOREM 1. N.rc—ub are (a) and (b).

The proof for (a) is contained in Theorem 12 of H. That for
(b) can be obtained by slight revision of the first argument in
Theorem I of K.

THEOREM 2. N.urc—ub is (cs).

By denial of the first part of (cz), there exists a sequence, for
fixed p, of non-zero quantities, Ayb,i,, with 7;>1; ;. The series
with terms

1/(A10bpli)7 (k = p, l=lfori=1,2,--- )s
X1 = {— 1/(A10bpli)) (k = 1? + 1, l = lt for i = 1, 2, e ),
0, otherwise,

is urc. But, for arbitrary m > p and arbitrary 1,
om; = 2 (A1odypr,)/(Arobp;) = 4.
i=1
THEOREM 3. N.urc—b is (ds).
By denial of the first part of (d), there exists a sequence, for
fixed p, of non-zero quantities, b,;, with I;>1,_;. The series like

that defined in Theorem 2, with Ayb,;, replaced by b,i,, is urc.
But for each 1,

oo = 2 (b (b)) = i
=1
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THEOREM 4. N.burc—c s (c1).

Let p be arbitrary. The series with terms

<_1)l+1a (k=P+17l=1,2;))
0, otherwise,

(—l)l; (k=P: l=1’2y"')7
xkl={

is burc. But, for m > p and arbitrary #, amn=zln,1(— 1) A 10by1,
so that |A10b,,,n+1\ = Iam+1,,,+1—am,,l, which must tend to zero
asm and # tend to .

THEOREM 5. N.b—c¢ are (d1) and (e).

The proof for (d;) is given in Theorem II of K; (e) follows
from Theorem 1 and (13) above.

THEOREM 6. N.bc—urc are (d,) and (e).

Conditions (a) and (c;) are N.bc—urc, by Theorems 1 and 4,
respectively. The series with partial sums sp=(—1)%/l,
(B, 1=1,2,---)1is bc. In (1), for fixed », lim,..(a) exists,
by (a); limm..(B) exists, by (10) and (6); limm..(y) =0, by (c1).
But by (12) and denial of (e), limu..(8) does not exist. Condi-
tion (d;) follows from (14).

THEOREM 7. N.burc—rcis (dy).

Conditions (a) and (c1) are N.burc—rc, by Theorems 1 and
4, respectively. The series with terms

(= 1% forl=1, (k=1,2,-:-),
X = {(— 1)%+1 forl = 2, (k=1,2,--"),
0, otherwise,

isburc. Butom =Zk'"=1(— 1)*b4y, so that [bm+1,1| = [o-m+1,1—omll ,
which must tend to zero as m tends to ©. Condition (d;) fol-
lows from (12).

5. Sufficiency Proofs. [(a), (8), (), (8) are defined in (1).]
THEOREM 8. S.0—b are (a) and (b).

(o) is bounded, by (a); (8) and (y) are bounded, by (6);
(8) is bounded, by (9).
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THEOREM 9. S.ub—ub are (a) and (c3).

Suppose sy bounded for k, I>Q. Set K=max K;, (I=1,
2, ,Q); L=max Ly, (k=1,2, - - -, Q); R=max (Q, K, L).
Since Anbkl =A10(A01bkz) =A01(A10bk1), (Ol) is bOUDdEd by
Zf,l:llsklAllbkA +Z]:l=Q+1|SklA11bkl| . For ’I’I:>R, (ﬁ) reduces
to Z,T;Qlﬂ Skal10brn, which is bounded, by (2), (10), and (6).
Similarly, for m > R, (v) is bounded. For m, > R, (8) is bounded
by (2), (10), and (9).

THEOREM 10. S.ub—rc are (a) and (ds).

The conditions are S.ub—c, by (4), (5), (13), and Theorem
15 (below). For fixed #, om, =Z§'=’{fk=1 %1011 for all m >max I,
(!=1,2, - - -, n). Similarly, lim, .0 . exists for m=1, 2, - - - .

THEOREM 11. S.r¢c—rc are (a) and (b). See Theorem 10 of H.
THEOREM 12. S.bc—bc are (a) and (c1).

By (10) and Theorem 8, the conditions are S.bc—b. Let m,
7 tend to «©. (o) converges, by (a); (8) and (y) tend to zero, by
(11); (8) converges, by (10) and (9).

THEOREM 13. .S.b—rc are (a) and (d;).
Use (3), (10), and (13); and see Theorem 11 of H.
THEOREM 14. S.c—c are (a) and (c2).

Suppose si; bounded for &, 1> Q. Define K, L, R, as in Theo-
rem 9. As m, n tend to «, (a) converges to

R ] R
> swAubu 4+ D swlAubu — 2 Swhubi.

k,l=1 k,l1=Q+1 k,1=Q+1

For n>R, (B) reduces to )_p<g+1 StnlA1odea, which converges to
zero, by (2) and (11). Similarly, it can be shown that (v) tends
to zero. The sum (§) converges, by (2), (10), and (9). (Compare
the concluding argument in Theorem I of K.)

THEOREM 15. S.ub—urc are (a), (cs), and (e).

Suppose sx; bounded for k, 1> Q. Define K, L, R, again as in
Theorem 9. As m and # tend to «, (a), (8), and () converge, as
is seen by reasoning as in Theorem 14; (§) tends to zero, by (e).
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Now fix #>R. Then for all m >max K,;, (I=1,2,---,n—1),
(e) becomes Y ;=L spAubri; (B) becomes D p=diy Skaliobin,
and as m tends to o this expression converges, by (2), (10), and
(6); (v) converges to zero, by (2); (8) tends to zero, by (2) and
(14). Similarly, it can be shown that lim, .0, exists for each
m>R.

THEOREM 16. S.burc—burc are (a) and (cy).

The conditions are S.burc—bc by Theorem 12. Suppose si;
regularly convergent for k, 1> Q. For fixed »>(Q, as m tends to
infinity, (a) converges, by (a); (8) converges, by (10) and (6);
(v) converges to zero, by (c;); (8) converges, by (10) and (9).
Similarly, it can be shown that for fixed m>Q, lim,.40mn
exists.

THEOREM 17. S.urc —urc are (a) and (cz).

The conditions are S.urc—c¢, by Theorem 14. Suppose s,
regularly convergent for k, > Q. Define K, L, R, in a manner
analogous to that used in Theorem 9. If #> R, it can be shown
as in Theorem 15 that, as m— o, (a), (8), (y) converge. (8)
converges, by (2), (10), and (9).

6. Summary of Results.

Transformation N. Conditions S. Conditions

rc— ub (a), (b) (a), (b)
burc— ub (a), (b) (a), (b)
bc— ub (a), (b) (a), (b)
b— ub (a), (b) (a), (b)
urc— ub (a), (b), (c), (c2) @), (co)
c— ub (@), (b), (c1), (co) (a), (c2)
ub— u’ (@), (b), (c1), (co) (a), (c2)
rc— b (@), (b) (a), (b)
burc— b (a), (b) (a), (b)
be— b (a), (b) (a), (b)
b— b (a), (b) (a), (b)
urc— b (a), (b), (c), (ca), (d), (do), (e) (a), (do)
c— b (@), (b), @), (), (@), (da), (©) (@), (d)
b b (@), ), @), (@), @), @), ©) (@), (ds)
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Transformation N. Conditions S. Conditions
re— ¢ (a), (b) (a), (b)
burc— ¢ (a), (b), (c1) (a), (1)
be— ¢ (a), (b), (c1) (a), (c1)
b— c (a)y (b)y (Cl)y (dl)y (e) (a)y (dl)
urc— ¢ (a), (b), (c1), (c2) (a), (c2)
c— ¢ (a), (b), (1), (c2) (a), (c2)

ub— ¢ (a), (b), (c1), (c2), (d), (e) (@), (ca), ()
rc— be (a), (b) (a), (b)
burc— be (), (b), (c1) (a), (cv)
be— b (a), (b), (c1) (a), ()
b— be (a)y (b)y (Cl), (dl)r (e) (a)y (dl)
urc— be (a)y (b)r (Cl)y (02)1 (_cll__)L(ch)y g_e_)_ (a)r (dﬁ)
c— be (@), (), (c1), (c2), (), (da), (e) (a), (d2)
ub—  be (a), (b), (c1), (c2), (dv), (da), (e) (a), (d2)
rc— urc (a), (b) (a), (b)
burc— urc (a), (b), (c1) (a), (c1)
bc— urc (a), (b), (cr), (dv), (e) (a), (dv)
b— urc (a), (b), (c1), (dv), (e) (a), (dv)
urc— urc (a), (b), (c1), (c2) (@), (c2)

c— ure (a), (b), (c1), (c2), (dv), (&) (a), (ca), (&)

ub— wurc (a), (b), (c1), (c2), (dv), (e) (@), (c2), (e)
rc—burc (a), (b) (a), (b)
burc—burc (a), (b), (c1) (a), (cr)
be—burc (a), (b), (c1), (dv), (e) (a), (dv)
b—burc (a), (b), (c1), (di), (e) (a), (d1)
urc—burc (3), (b)y (cl)y (CZ)y @, (d2)y (__el (a)r (d'l)
c—burc (a), (b), (c1), (c2), (dv), (d2), (e) (a), (d2)
ub—burc (a), (b), (c1), (c2), (d), (d2), (e) (a), (d2)
re— rc (), (b) (a), (b)
burc— rc (a), (b), (c1), (dv), _(_S} (a), (dv)
be— rc (a)y (b)) (cl)y (dl)) (e) (a)y (dl)
b— rc (a); (b)7 (Cl)) (dl)v (e) (a)? (dl)
urc— rc (a)’ (b)i (cl)r (02)1 (dl)r (d2)r _(_e_)_ (a)y (dZ)
c— r¢ (a), (b), (c1), (c2), (d), (d2), (e) (a), (d2)
ub—  rc (a)y (b)y (Cl)y (C2)y (dl)r (dz)» (e) (a)y (dz)

Those entries which do not follow from Theorems 1-17 can
be deduced from accompanying entries by application of (2),
(5), or (13). Such entries are underscored.
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