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THREE THEOREMS ON THE ENVELOPE 
OF EXTREMALS 

BY MARSTON MORSE 

1. Introduction. We are concerned with the envelope in the 
small, more specifically with the conjugate locus in the small. In 
the large, noteworthy papers have recently been written by 
Whitehead [4] and Myers [3], and the reader may also refer 
to the work of the author [ó]. 

In the analytic case in the plane the theory is relatively com­
plete. For a brief account and references see Bolza [ l ] , pages 
357-369. In 3-space Mason and Bliss [2] have treated the en­
velope in the case where the envelope is ordinary. Hahn [5] has 
reduced the minimum problem in 3-space in the non-parametric 
form to the study of an analytic function of two variables 
whose Hessian vanishes at the point in question. This trans­
formation of the problem does not however clear up the diffi­
culties inherent in the envelope theory. 

There are three theorems on the envelope which go con­
siderably further than the above theory. Of these theorems the 
first is a topological characterization of a conjugate point, and 
has been proved by Morse and Littauer [7]. The second theo­
rem is a basic result on the analytic representation of the en­
velope neighboring one of its points. I t is an immediate conse­
quence of two theorems proved by the author, one [9] on the 
order of a conjugate point, and the other, Morse ([ó], page 235), 
on the continuation of conjugate points. I t is similar to a theo­
rem independently derived from the author's results by White­
head ([4], page 690). 

The two preceding theorems refer to the analytic case. The 
theorem to which most of this paper is devoted is not so re­
stricted. I t gives sufficient conditions for a relative minimum 
in the problems in parametric form when the end points A and 
B of the given extremal g are conjugate. 

2. The Functional. Let R be an open region in the space of the 
variables (x\, • • • , xm) = (x). Let 

F(xh • • • , xm,rh • • • , rm) = F(x, r) 



1936-1 ENVELOPES OF EXTREMALS 137 

be a function of class C " for xmR and (r) ^ (0). We suppose 
that F(x, r) is positively homogeneous in the variables r of order 
one. We shall start with the integral in the usual parametric 
form 

F(x, x)dt, 

where {£) stands for the set of derivatives of (x) with respect to /. 
Let g be an extremal lying in R with end points A and B. 

We assume that the Legendre 5-condition holds along g([6], 
p. 120). If F is analytic, g will be an analytic curve, 

3. A Local Representation of the Envelope. Referring to the 
extremal g of the preceding section, let (X) be the set of direc­
tion cosines of the tangent to g at A. Let (X) represent a point 
P on a unit (m —l)-sphere 5 with center at the origin. Let (a) 
be a set of parameters in a regular representation of S neighbor­
ing P on S. Suppose that (a) = (a0) represents P . Let 5 be the 
arc length of the extremals issuing from A, measuring 5 from A. 
It is well known that the extremals which issue from A with di­
rections determined by (a) can be represented in the form 
( [ó ] ,p . 117) Xi = Xi(s, a), (i = l, • • • ,m) , where the functions 
Xi(sy a) and their first partial derivatives as to s are of class 
C" (analytic if F is analytic) for (a) near (ao) and values of s 
near those on g. The real zeros (s, a) of the Jacobian 

V\%\} , xm) 
A(s, a) = — , (n = m - 1), 

D(s, ah • • • , an) 

when substituted in Xi(s, a) define the envelope of the family. 
Let So be the length of g. We note that A(s0, do) = 0 since B is 
assumed conjugate to A. From the result on page 119 of [ó], we 
infer that A(s, a0) admits a representation neighboring (s0) 
of the form 

A(s, ao) = (s - So)rA(s), (A(s0) * 0), 

in which the integer r is at most m — 1 and 4̂ (s) is analytic at 
s0. 

If P i s analytic, A(s, a) can be represented neighboring (s0, a0) 
in the form (see Osgood [l0]) 
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à(s, a) = 4>(s, a)B(s, a), (B(s0, a0) 9* 0), 

where 

<t> = (s - s0)r + Ai(a)(s - So)1"1 + • • • + Aria), 

where Ai(a) and B(s, a) are analytic at (s0, a0) and Ai vanishes 
there. The equation 0 = 0 is accordingly satisfied by r roots s, 
real or complex, corresponding to each set (a) sufficiently near 
(ceo). But according to Lemma 13.3 of Morse ([ó], p. 235), these 
r roots will all be real if (a) is real and sufficiently near (ceo)-
The first theorem is then as follows. 

THEOREM 1. The sets (s, a) neighboring (so, ao) which deter­
mine points on the envelope can be grouped into r real single-valued, 
continuous functions, Si = Si(a), (i = l, • • • , r), analytic except 
at most on analytic loci Mv of dimension p<n. Any two of these 
functions which are not identical will be distinct except at most on 
loci similar to Mp. 

4. Sufficient Conditions Involving the Envelope. Let Ae denote 
the set of extremals which run from A and make angles at most 
e with the ray positively tangent to g at A. Let er and e" be 
two positive constants, and let H(g, e', en) be the set of points 
at a distance less than e' from B, excluding B, and lying on rays 
issuing from B making angles less than en with the ray nega­
tively tangent to g at B. With this understood we state the fol­
lowing theorem. 

THEOREM 2. If B is the first conjugate point of A, sufficient con­
ditions that g afford a proper, strong, relative minimum in the 
problem in parametric form are as follows: (I) that the Weier-
strass and Legendre S-conditions hold along g; (II) that there 
exist positive constants e, e', and en, such that H(g e', e") con­
tains no conjugate point of A on the respective extremals of Ae; 
(III) that no extremal of Ac pass through B save g. 

In this theorem it is understood that the domain of the points 
(x) consists of any sufficiently small neighborhood of g. To prove 
the theorem we suppose that a transformation has been made to 
coordinates (si, • • • ,zm) = (x,yi, • • • , yn), (n = m — 1), as in [8], 
(p. 381), and that g is carried into the segment 7 of the x axis 
with a^x^O. One thereby obtains a new integrand G(z, z) in 
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parametric form. If the hypotheses of the theorem are satisfied 
by g and F(x, x) and the corresponding envelope, it is clear that 
the hypotheses of a similar theorem will be satisfied by the ex­
tremal 7 by G(z, z) and the transformed envelope. To avoid 
undue complexity we understand from this point on that Theo­
rem 2 refers to the transformed extremal function G, and en­
velope. We shall refer to the extremal 7 as the extremal g. It is 
clear that no generality will be lost in the proof by virtue of 
these conventions. The region H(g, ef, en) taken in its new 
sense will be bounded in part by a cone K{e") whose vertex 
angle is 2en and whose axis is the negative axis of x. We con­
tinue with the following lemma. 

LEMMA L If rj is a sufficiently small positive constant, no ex­
tremal of An will meet the cone K(en) in more than one point. 

The proof of this lemma can be left to the reader. 

The discs D(cr, c). Let c be a negative constant such that 
0 < — c<e' cos e". For such values of c the conical region 
H(gi e'1 z") will intersect the w-plane x — c in an ^-dimensional 
open spherical disc Dc with center on the x axis. We denote the 
radius of this disc by p(c). We now describe a set of discs con­
centric with Dc. These new discs shall have radii aSp(c) and be 
denoted by D(a, c). Like Dc they shall lie on the w-plane x = c 
and have centers on the x axis. They shall not include their 
spherical boundaries. Let a be a constant less than the con­
stants e and t\ of Theorem 2 and Lemma 1, respectively. If a 
is sufficiently small, the disc D(a, c) will have the following 
property : 

(i) There will exist a subset of the extremals of Aa which 
includes the extremal g, which is such that one and only one 
of its extremals passes through each point of D(a, c), and which 
forms a proper field, neighboring each point of D(a, c). 

Of the values of a for which a ^p(c) let a(c) be the maximum 
for which D(a, c) possesses the property (i). Inasmuch as D(cr, c) 
is open, such a maximum clearly exists. We continue with the 
following lemma. 

LEMMA 2. If /3 is a sufficiently small positive constant and 
0>c^ — ]8, thena{c) =p{c). 
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We shall begin the proof by establishing the following state­
ment. 

(a) If <r(c) <p(c), there exists an extremal which issues from A 
making the angle a with the x axis and which passes through a 
point on the boundary of the disc D [cr(c), c]. 

Let (v) denote the set of coordinates of a point on the n-plane 
x = c. When the point (c, v) is on D[cr(c), c], there is a unique 
extremal E in the set described in (i) which passes through the 
point (c, v). Let p%{v) denote the slope functions of this extremal 
at A. Suppose (a) false. If e is a sufficiently small positive con­
stant, there will then exist no extremals which make the angle a 
with the x axis and which pass through points on the domain 

(1) D[<ri, c] — D[<ro, c], <n = <r(c) + €, o-0 = <r{c). 

If, moreover, e is chosen so small that cr(c)+e^p(c), there will 
be no conjugate points of A belonging to the extremals of Aa 

and lying on the disc D(ai, C). 
It follows that the functions pi(v) as defined for (v) on J9(o"0, c) 

can be continued along any path that lies on D(<rh c), yielding 
thereby only slopes p%{v) which define extremals of Aa. The 
functions pi(v) so extended conceivably might be multiple-
valued. But the domain D(o"i, c) is simply connected and it 
follows from a well known argument due to Schoenflies (see 
Bliss, [ l l ] , p p . 37-41) that the extended functions pi(v) are 
single valued. 

The number a(c) is accordingly not the largest number for 
which property (i) holds. From this contradiction we infer the 
truth of (a). 

Suppose that the lemma is false. There will then exist a se­
quence cm of values of c tending to 0 as a limit as m becomes 
infinite and such that a(cm) <p(cm), (m = l, • • • ). Set (r{cm) =o"m. 
Corresponding to cm, as we have just seen, there will exist an 
extremal Em which issues from A making an angle a with the 
x axis and which passes through a point on the boundary of 
D(<rm, Cm)- Let hm represent the direction of Em at A. The direc­
tions hm will have a cluster direction h. Let E* be the extremal 
issuing from A with the direction h. The extremal £* will make 
an angle a with the x axis at A. Moreover E* will pass through 
the point B, since am tends to zero as m becomes infinite. This, 
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however, is contrary to hypothesis I I I of the theorem. We infer 
the truth of the lemma. 

The field 2 . We shall define a field 2 of extremals which in­
cludes as an inner point each point of the x axis forwhicha<x<0} 

which covers the points of H(g, e', en) for which x> — ]8, where /3 
is the constant of Lemma 2, and neighboring A includes all ex­
tremals which issue from A and make sufficiently small angles 
with the positive x axis. 

Let U{c) denote the set of extremals in (i) for <r — p(c) and 
0>c> —-jS. I t follows from Lemmas 1 and 2 that the extremals 
of U(c) are continuations of a subset of extremals of U(c'), 
provided c>c'. The field 2 will now be defined as follows. For 
# < # < ; —j8, 2 shall consist of the extremals of Ad} where d is so 
small a positive constant that Ad forms a proper field in the 
domain of points covered by Ad for a<xS — &. For — /3<x, 
2 shall consist of the continuation of the extremals of U{—fi) 
up to the points Q where these extremals meet the conical 
boundary of H(g, e', e"), not including the points Q. I t follows 
from Lemma 2 that 2 has the properties required. 

Let pi(x, y) be the slope functions in non-parametric form of 
the extremals of 2 . With the aid of these slope functions the 
Hubert integral corresponding to the field 2 and the non-
parametric problem will take the form 

I = I M(x, y)dx + Ni(x, y)dyit 

We extend the definition of I so as to include the points A and 
B, taking M and Ni at A and B as zero. On S there will exist a 
function H(x, y) of class C' such that 

dH(x, y) = Mdx + Nidyit 

Moreover, on S the partial derivatives M and Ni of H are 
bounded in absolute value. I t follows that H(x, y) tends to 
unique limiting values at A and B, respectively, and will be 
defined at A and B as equal to these values. Upon evaluating I 
along the x axis one sees that these limiting values are zero. 
We continue with the following lemma. 
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LEMMA 3. The Hilbert integral I is zero along any path h of the 
form yi = yi(x), (a^x^Q), where yi(a) =3>i(0) = 0 , yi(x) is of 
class D', and the path h lies in the field 2 except for its end points 
A andB. 

The lemma follows at once upon noting that along h 

dI d r ^ 
— = —H[x, y(x)\ 
dx dx 

except at most at the end points and corners of h. I t follows 
that 

Ih=H(0, 0)-H(a, 0 ) = 0 , 

and the proof is complete. 
Let c* be a value of x such that a<c*<0. If parameters 

(*>i, • • * , vn) = (v) are taken sufficiently near zero, the end points 
A and B of g can be joined to the point (x, y) = (c*, v) by unique 
extremals. Let the resulting broken extremal be denoted by 
E{v). Let the value of J along E(v) be denoted by J(v). If the 
set (v) is sufficiently near (0), E(v) will be a curve of the type 
admitted in the preceding lemma. For such a curve we can use 
the preceding lemma to establish the Weierstrass formula 

J(v) - / (0) = \ E[x, y, / , p(x, y)]dx 
J a 

where E is the Weierstrass E-function in non-parametric form 
with slope functions belonging to the field S and with 

Pi(0, 0 )=£ t ( a , 0 ) = 0 . 

I t follows that 

(2) / W > / ( 0 ) , W ^ ( 0 ) , 

provided (v) is sufficiently near (0). We continue with the fol­
lowing lemma. 

LEMMA 4. If U is a sufficiently small neighborhood of g, J 
assumes on g a proper, strong, minimum relative to curves 

(3) yt = yi(x), M^O), 

of class D ' which join the end points of g on U. 
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To prove the lemma we divide the curve (3) into two seg­
ments h and k by the w-plane x = c* and compare h and k with 
the respective segments of the broken extremal E(v) which join 
the same end points. As is well known the component extremals 
of E{v) will give at least as small a value to J as do h and k 
respectively, provided U is sufficiently small. For such a U we 
infer from (2) that g is a minimizing arc relative to curves of 
the type (3). 

Observe that the curve (3) cannot be an extremal if U is 
sufficiently small by virtue of condition III of the theorem. 
I t follows that the minimum is proper. Our final lemma is as 
follows. 

LEMMA 5. If Nis a sufficiently small neighborhood of g, g affords 
a proper, strong minimum to J relative to curves X of class D' in 
parametric f or m which lie on N and join the end points of g. 

Let g be divided into four segments by points with x coordi­
nates ai, #2, #3 such that <z<#i<#2<<Z3<0. Set a^ = a and a4 = 0. 
Let F be a subneighborhood of U. (See Lemma 4.) Let pi be 
an arbitrary point on V and on the w-plane x — ai, and let 

(4) ptpw, ( i - 0 , 1 , 2 , 3 ) , 

denote the extremal joining pi to pi+\. If V is sufficiently small, 
each extremal (4) will afford a proper strong minimum to J re­
lative to curves of class Df in pararnetric form which join its end 
points on V and do not cross the w-planes x = at_i, (i = 1, 2, 3), 
x = ai+2, (i = 0, 1, 2). Let Nc V be so small a neighborhood of 
g tha t the extremals (4) lie on V when the points pi lie on N. 
With this choice of the neighborhood N, we shall establish the 
lemma. To that end we shall replace the given curve X by a 
curve which is admissible in Lemma 4, without however in­
creasing the value of J. 

Let k be a segment of X whose end points pi and pi+i lie on the 
w-planes x == ai and x = a,-+i, respectively, and which does not cross 
the fz-planes x = a^i and JC = at+2. If k is a proper subarc of no 
arc of X with these properties, we shall admit a replacement of 
k by the corresponding extremal (4). A finite number of such 
replacements suitably chosen and successively performed will 
yield a curve admissible in Lemma 4. Lemma 5 and our theorem 
follow. 
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