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ON CERTAIN VARIETIES WHOSE CURVE SECTIONS 
ARE HYPERELLIPTIC CURVES* 

BY B. C. WONG 

The properties of hyperelliptic curves, which have been de­
scribed by Bobek,f are well known. One important property of 
such a curve, which must be of genus greater than unity, is that 
it carries on it one and only one complete and special series of 
groups of two points. From this property various others follow. 
For example, a hyperelliptic curve in any space can be trans­
formed into a plane curve of order n with an (n — 2)-fold point. 
Now surfaces in a space of any number of dimensions whose 
sections by spaces of dimension one lower are hyperelliptic 
curves have certain properties and these have been investigated 
by Castelnuovo.J Such a surface must contain <*>x conies 
such that through each point of it passes one and only one of 
them. It can be transformed or projected into one, of order n, 
in a 3-dimensional space having an (n — 2)-fold line; and it is 
rational. 

In this note we call attention to two varieties, in a higher 
space, whose curve sections are, as we shall show, hyperelliptic 
curves. One is the Vn

2n+1 in 52«+i which was the subject of an 
investigation by Babbage§ and the other is the Vk2n~2k+1 in >on 

which is the residual intersection of (n — k) cubic hypersurfaces 
having in common the intersection ikfn

4-2 of two quadric hyper­
surfaces of Sn. We shall describe in some detail the surface 
yk2n-2k+i for ^ = 2 or F2n~z and also its projections in a 3-space. 
Incidentally, we shall obtain a property concerning linear spaces 

* Presented to the Society, November 30, 1935. 
f Bobek, Ueber hyper elliptische Curven, Mathematischen Annalen, vol. 29 

(1887), pp. 386-412. 
% Castelnuovo, Suite superficie algebriche le cui sezioni piane sono curve 

iperellittiche, Rendiconti del Circolo Matematico di Palermo, vol.4 (1890), pp. 
73-88. 

§ Babbage, A series of rational loci with one apparent double point, Proceed­
ings of the Cambridge Philosophical Society, vol. 27 (1931), pp. 399-403. 
See also B. C. Wong, On a certain rational Vn

2n+1 in 52n+i, American Journal 
of Mathematics, vol. 56 (1934), pp. 219-224. 
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contained in a general variety whose curve sections are hyper-
elliptic curves. 

We may readily infer that any variety, Vt, of / dimensions 
in an espace Sr with hyperelliptic curve sections must contain 
a rational oo ^system of quadric (/ — l)-dimensional varieties 
such that through each point of it passes one and only one of 
them. A general Sr-t+i of Sr meets each of these quadric varie­
ties in a pair of points and the oox pairs of points so obtained 
form a series of groups of two points on the curve in which 
Sr-t+i meets Vt. We see also that the variety is rational, in the 
sense that the coordinates of a point on it are rational functions 
of / non-homogeneous parameters, / — 1 of which are the parame­
ters of a point on one of the quadric varieties contained in Vt 

and the other is that of the variable quadric variety of the 
oox-system.* Any section Vh for h^2 of the variety is also ra­
tional in this sense. Again, the variety can be transformed or 
projected into one, of order n, in a (/+l)-space St+i with an 
(n — 2) -fold (/ — l)-space so that any section of the projected 
variety by a 3-space of St+i will be a surface with an (# — 2)-fold 
line. 

Now we derive a property concerning linear spaces contained 
in Vt. I t is known t that a quadric variety of / — 1 dimensions in a 
/-space contains oo^W-i m-spaces, where 

1 
Nm,t-i = — (m+ 1)(2/ - 3m - 2), 

and 

1 1 
m S — (/ •— 2), if / is even; m ^ — (/ — 1), if / is odd. 

Since Vt contains ool such quadric varieties, it contains 
ootfm,<-i+i m-spaces. If t is even and m = (/ —2)/2 and therefore 
/ = 2w + 2, we have oo (̂ 2+3m+4)/2 m-Sp aces on F2m+2; and, if / 
is odd and m = (/ —1)/2 and therefore / = 2m + l, we have 

* We do not know whether every such Vt can be mapped upon a /-space. 
f Bertini, Projektive Geometrie Mehrdimensionaler Raume, 1924, pp. 140-

141. 
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QQ (m2+m+2)/2 w . S p a c e s on F2m+i. T h u s , V2 con t a in s 002 points; 
Vz contains 002 lines;* Vi contains <*>4 lines; and so on. 

Let us now consider the varieties, Fn
2 n + 1 in S2n+i and Vk

2n~2k+l 

in Sn, already mentioned above. The first one, Vn
2n^"^ in «Ŝ n-fi* 

as was shown by Babbage, can be represented upon an Sn by 
means of the cubic hypersurfaces of Sn passing through the in­
tersection Afn

4_2 of two quadric hypersurfaces of Sn. It can be 
shown without difficulty that any n — k of the cubic hypersur­
faces intersect in a Vk

2n~2k+l which has a Vk-\
k) in common with 

ikfn
4_2. To Vk

2n~2k+1 corresponds a section, Vk
2n+1, of Vn

2n+l by 
an Sn+k+i and to Vt~rk) corresponds a ruled variety Vk

U(n~k) 

on Vn2n+1. Now Fn2n+1, as was shown by Babbage, has <x>l 

quadric (w-l)-dimensional varieties each of which corresponds 
to a quadric hypersurface in Sn passing through ikfnL2. Hence, 
Vn

2n+l, and therefore any section Vk
2n+l of it, has hyperelliptic 

curve sections. We infer that the Vk
2n~2k+l in Sn to which Vk

2n+1 

corresponds must also have such sections. This result also fol­
lows from the fact that any quadric hypersurface in Sn passing 
through ikfw

4~2 meets Vk
2n~2k+1 in a quadric (k — l)-dimensional 

variety besides the Vk
4in~h) which is on M£-2. Then, Vk

2n~~2k+l 

has 00 1 quadric (jfe — l)-dimensional varieties such that each 
point on it is on one of them. 

The characteristics of Vn
2n+l are known,f and those of a sur­

face section, F2n+1
y by an Sn+s can be easily calculated. The 

projection of F2n+1 in an S4 has (» — l)2 + (w — 2)2 improper 
double points and the projection in S3 has a double curve 
of order n2+(n — l)2 upon which lie 8(w —1) pinch points and 
(2w-3)(2w 2 ~6w+7) /3 triple points. 

The surface, F2n~z, of intersection of n — 2 cubic hypersurfaces 
of Sn passing through Af„L2, to which corresponds the surface of 
the preceding paragraph, has hyperelliptic sections. According 
to Castelnuovo, it can be represented upon a plane ƒ by an 
oon-system of w-ic curves having one (n — 2)-fold base point, A, 
and 2n — 1 simple points, Bif (i = l, 2, • • • , In — 1). From this 
representation we see that the surface is of class 8^ — 12, that 

* We do not know whether any 3-dimensional variety that has rational sur­
face sections contains 002 lines. A surface with rational curve sections is ruled 
and, in general, a Vt with rational curve sections is the locus of 001 (t — 1)-
spaces; but a Vt with rational surface section is not the locus of <x>2 (/ — 2)-spaces. 

f B. C. Wong, On a certain rational Vn
2n+1 in Sfn+i, loc. cit. 
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its projection in an S4 has 2(n — 3)(n — 4) improper double 
points, and that its projection in an S3 has a double curve of 
order 2(n — 2)(n — 3) with Sn — 24 pinch points. The image in ƒ 
of the double curve is a curve of order (n — 3)(2n — l) passing 
through A (n — 3)(2n — S) times and through the 2n — 1 points 
Bi each 2{n — 3) times. 

The surface F2n~z in Sn may be regarded as the projection 
of an Fén~4 in an S3w-i from an 52w-2 determined by 2n — 1 gen­
eral points upon it. The projection of this /?4w-4 in S4 has 
Sn2 — 31^ + 31 improper double points and the projection in 
S3 has 16^ — 28 pinch points and a double curve of order 
Sn2 — 23n + l7. F4n~4 is normal in S3n-i as it is representable 
upon ƒ by the 00 3n-1-systems of n-ic curves having one (n — 2)-
fold base point at A and no other base points. 

If we project F2n~z in Sn upon an S3 of Sn from an Sn_4 de­
termined by n — 3 general points on it, we have for projection 
an Fn with an (n — 2) -fold line which constitutes the double 
curve of order (n — 2)(n — 3)/2. On this (n — 2)-îold line are 
4^ — 12 pinch points. 

In order to see better how this {n—-2)-fold line on F2 arises 
from projection, we consider the Fn+2 in S5 which is the projec­
tion of F2n~z from 3n — 6 points on it. Its representation in ƒ 
is effected by means of the 005 n-ic curves passing through a 
given point A n — 2 times and through each of 3n — 6 other given 
points B\y • • • , Bsn-Q once. There are 002 curves of order n — 1 in 
ƒ having A for (n — 3)-fold point and Bh • • • , Bzn-e for simple 
points. Each of these curves goes into a curve, Kn

y of order n 
on Fn+2, which, constituting with every conic of the surface a 
4-space section of the surface, is a 3-space curve. Hence, there 
are 002 such 3-space curves on Fn+2. Each of these curves lies on 
a quadric surface and meets the generators of one regulus n — 2 
times and the generators of the other regulus twice, and there­
fore it has 001 (n — 2)-secant lines. Through a general point P 
pass col such curves all having an (n — 2)-secant line in common 
and the 3-spaces containing them all pass through this common 
(n — 2)-secant line. These 3-spaces through P form a quadric 
hypersurface F4

2 of S5. 
Now project this Fn+2 from P upon an S4 and the projection, 

Fn+l, has an improper multiple point of order n — 3 which is to be 
regarded as the union of (n — 3){n — 4)/2 improper double points 
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and which is the intersection of the common {n — 2)-secant line 
of the 00l 3-space n-ic curves on Fn+2 through P. On Fn+l are 
00l plane curves of order n — 1 all having an (n — 3)-fold point 
at the improper (n — 3)-fold point. These 00l curves are the pro­
jections of the 3-space n-ic curves through P . Now in the 
plane ƒ of representation there are 3n — 5 simple base points 
Bu - • • , i*3n-6 besides the (n — 2)-fold base point A. The pencil 
of (n — l)-ic curves through A n — 3 times and Bi once yields 
the 001-system of plane (n — l)-ic curves on Fn+l with the same 
(n — 3)-fold point at the improper (n — 3)-fold point of the sur­
face. The planes of these curves generate a V£ which is the 
intersection of the F4

2, mentioned in the preceding paragraph, 
and S4. Note that the n — 3 base points of the pencil of (n — 1)-
ic curves of ƒ, distinct from A and B{, are the images of the 
improper (n — 3)-fold point of Fn+l. 

A general section of Fn+l by an S3 is a curve having 00l 

(n — 1)-secant lines lying on a quadric surface which is the sec­
tion of F3

2 by S3. This curve meets the generators of one regulus 
of this surface in n — 1 points and those of the other in two 
points. I t is the partial intersection of the quadric surface and 
another surface, of order In — 2, having n — 3 lines in common. 

Now of the 00l (n-l)-ic curves on Fn+1 one, say Kn~x, passes 
through a general point Q. Projecting Fn+l from Q upon S3, we 
obtain an Fn with an (n — 2)-fold line / which is the projection 
of Kn~l. The curve Kn~x having an (n — 3)-fold point is of genus 
3 and class 4^ — 10. The point Q being on X71"1, the number of 
tangent lines from Q to Kn~l is therefore 4w —12. The projec­
tions of the points of contact are pinch points on Fn. Hence Fn 

has 4^ — 12 pinch points on the (n — 2)-fold line /. 
If we project Fn+l from its improper (n — 3)-fold point upon 

S3, we obtain for projection a quartic surface composed of two 
coincident quadric surfaces. This double quadric surface is the 
intersection of the V£ already mentioned and S3. 

I t is of interest to note that the P4w~4 in S3n-i may be repre­
sented upon ƒ by an 00 3n_1-system of (n+i\T)-ic curves having 
one (n-\-N—2)-fold base point and N double base points for all 
values of N^O. A general projection of P4w~4 upon an S4 has 
Sn2 — 31n+31 improper double points all lying in a plane ir. This 
plane w contains a curve i£4w-6, of order 4^ — 6, of the projected 
surface and this is of genus n — 3 and has the 8n2 — 31^+31 im-
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proper double points for nodes. If we project the projected sur­
face upon an 53, we have an FUn~4 having a double curve of 
order 8n2 — 23w + l7 with 16w —28 pinch points. If the center of 
projection is in 7r, the double curve degenerates into a (4w —6)-
fold line and 3n — 4: double lines. Since the class of K4n~* is 
10ft — 20, there are on the (4n — 6)-fold line 10ft —20 pinch 
points. The remaining 6ft —8 pinch points are on the 3ft —4 
double lines, 2 on each. 

THE UNIVERSITY OF CALIFORNIA 

SPINORS AND TENSORS 

BY G. Y. RAINICH 

It is well known that there are two kinds of quantities con­
nected with the representations of a group of rotations—the 
tensors and the spinors.* Since the advent of the relativity 
theory we had been led to believe, in the words of O. Veblen,f 
" that any physical phenomena could be described by means of 
tensors." But then came the Dirac equations of the electron 
which give an example of a situation described in terms of 
spinors. Does it mean that we have to change the belief ex­
pressed above? I t does not follow. All that has happened is 
that we have a phenomenon not described in terms of tensors ; 
that does not mean that it cannot be-so described. That it might 
be possible to describe every situation given in spinors also in 
tensors is suggested by the fact that there exist algebraic rela­
tions between spinors and tensors ; it may be possible to elimi­
nate the spinors from a sufficient number of these algebraic 
relations and the given spinor differential equations, and obtain 
in this way an equivalent description in tensors. The discussion 
of the general case should not be very difficult, but it seemed 
that a simple special case should be worked out first, and that is 
why I suggested to Gordon Fuller the problem which he dis­
cusses in his article. J The problem there is treated without 

* Compare, for example, R. Brauer and H. Weyl, American Journal of 
Mathematics, vol. 40 (1935), p. 425. 

t Proceedings of the National Academy of Sciences, vol. 24 (1934), p. 282. 
j This issue of this Bulletin, vol. 42 (1936), p. 107, 


