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LINEAR CONNECTIONS OF NORMAL SPACE TO A 
VARIETY IN EUCLIDEAN SPACE* 

BY C. B. TOMPKINS 

1. Introduction. This paper deals with an extension of the 
Gauss formulas of a surface imbedded in ordinary space to ap­
ply to an w-dimensional variety imbedded in an ^-dimensional 
euclidean space. The Gauss and Codazzi relations are extended 
to give integrability conditions in terms of the Christoffel sym­
bols of the second kind of the variety, a set of tensors corre­
sponding to the coefficients of the second fundamental form of a 
surface in three space and a set of non-covariant quantities : the 
connection coefficients of the normal space. 

Several authors f have considered generalizations of the 
Frenet or the Gauss formulas to apply to varieties lying both 
in euclidean and in more general spaces, but the nature of some 
of the coefficients which may appear in these formulas seems to 
have escaped serious study. 

In the considerations here there will be encountered an im­
bedding euclidean space of n dimensions, a variety of m dimen­
sions lying in it and at each point of this variety an m-dimen-
sional tangent space and an (n — m)-dimensional normal space. 
A vector in the imbedding space will be denoted simply by a 
letter, and all indices running from 1 to n will be suppressed. 
Latin indices lying between a and k will have the range from 1 
to m and Latin letters from p through z when used as indices 
will have the range from 1 to {n — m). Corresponding Greek let­
ters will be used as summation indices. 

The work in this paper differs from that in most of the previ-

* Presented to the Society, April 19,1935. 
t See, for instance, Voss, Mathematische Annalen, vol. 16 (1880), p. 129; 

H. Weyl, Mathematische Zeitschrift, vol. 12 (1922), p. 162; Schouten and van 
Kampen, Mathematische Annalen, vol. 105 (1931), p. 144; E. Bortolotti, 
Rendiconti del R. Istituto Lombardo di Scienze e Lettere, (2), vol. 64 (1931), 
p. 441; E. H. Cutler, Transactions of this Society, vol. 33 (1931), p. 832; C. E. 
Weatherburn, Reports of the Australian and New Zealand Association for the 
Advancement of Science, vol. 21 (1933), p. 12; Duschek and Mayer, Lehrbuch 
der Differential geometrie, vol. 2. 
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ously published papers in the method of selecting coordinates 
in the normal space; in this paper a set of perfectly arbitrary 
mutually orthogonal unitary vectors is set up as a coordinate 
system in the normal space at every point of the variety, while 
in most of the other papers the normal space is divided into 
several subspaces (the first containing all components of the 
first derivatives of the tangent vectors lying in the normal space, 
the second determined by additional components of the second 
derivatives, and so on) and in each of these subspaces an arbi­
trary coordinate system is introduced. Weyl derived the same 
Gauss formulas and integrability conditions we shall use, but he 
seems not to have noticed the properties of the coefficients which 
we shall call N^. 

2. The Gauss Formulas and Integrability Conditions. A variety 
of m dimensions may be represented by a set of equations de­
pending on m parameters, x = x(uk). In general there is a 
uniquely determined flat m-space tangent to this variety at 
every point; this is the linear space depending on the vectors 
pi^dx/du1] it is m-dimensional and uniquely determined if the 
vectors pi are linearly independent. Also at every point there is 
a flat space which is absolutely perpendicular to the tangent 
space. If the tangent space is actually m-dimensional, the nor­
mal space is (w--m)-dimensional and contains sets of (n — m) 
unit mutually orthogonal vectors. We may choose any such set 
and name it tp. Now, any vector connected with a point of the 
variety may be written as a linear combination of the vectors 
pi and tp associated with that point. In particular we can write 

àpi a p 
(1) = Tikpa + Liktp, 

duk 

where the coefficients Y\j are the Christoffel symbols of the sec­
ond kind connected with the variety and the choice of parame­
ters. 

We write also the equations for the partial derivatives of the 
vectors tP} 

(2) —= -Lk
appa + NP

pktP, 
duk 
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where it is easily shown that Lv
ik = giaLk

v. Because the vectors 
tp are mutually orthogonal unitary vectors, the coefficients Nfa 
must be anti-symmetric in the indices p and^g. 

The simplest method of arriving at integrability conditions 
seems to be that of variation of product integrals as developed 
by Rainich and Vaughan.* It is well known that we can take 
any set of equations of the form of (1) and (2) and by applying 
product integrals over some path arrive at a set of values for 
the vectors pi and tv along the path. However, for the variety 
to be a true variety it is necessary and sufficient that the vectors 
obtained for any point be the same no matter what path is 
used in deriving them; that is, the variation of the product in­
tegral used in their derivation must be zero. If we denote the 
matrices of the coefficients of the pi and tp in the expression for 
the partial derivatives with respect to uk in (1) and (2) by Ak} a 
necessary and sufficient condition for the variation to vanish is 

dAi dAh 

AiAk - AkAi H = 0. 
duk du1 

If we denote the matrices which make up A k in the obvious 
manner by Tk, Lk, Lk', and Nk, three relations analogous to the 
Gauss and Codazzi relations follow, conditions necessary and 
sufficient for the set of equations (1) and (2) to represent a true 
variety : 

dTi dTk 
™ — + TiTjc — TkTi = LkLi — L{Lk , 

(3) s:ki s —i- - ^ f + NiNk - NkNi = Li U - L{Lk, 

. . „ - TkLi + LiNk- LkNi = 0. 
duk du1 

Having given the quantities Tk, Lk, and Nk satisfying these con­
ditions and having given also a set of values for the components 
of the fundamental metric tensor at some point on the variety, 
the variety may be completely reconstructed except for position 
by means of a product integration followed by a Riemann inte­
gration. 

hi — 

ki — 

dLi 

duk 

dNi 

duk 

dLk 

du1 

dNk 

du1 

. _i_ T 

* Abstract, this Bulletin, vol. 40 (1934), p. 233. 
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3. Laws of Transformation. All the coefficients of the equa­
tions (1) and (2) are invariant under transformations of the co­
ordinate system of the imbedding euclidean space. Under trans­
formations of the system of parameters uk, the coefficients r# 
transform under the well known law for the transformation of 
connection coefficients; under these transformations, the coeffi­
cients Z4 transform as second rank doubly covariant tensors 
with indices i and k, while the similar quantities with one index 
raised must obviously transform as second rank mixed tensors. 
These transformations are all obvious from the form of equation 
(1). From equation (2) it is also evident that under arbitrary 
changes in parameterization of the variety the coefficients Nfa 
transform as first rank covariant tensors with index k. 

In the normal space we allow rotations; more general trans­
formations could be introduced with slight changes in the for­
mulas already developed, but the introduction of such additional 
generality would simply necessitate the distinction between co-
variance and contravariance without rendering any useful serv­
ice. We consider transformations of the type t=At, where A is 
an orthogonal matrix. Applying this to the quantities of equation 
(1), we get the law of transformation for the coefficients L%, 

By continuing to equations (2), we find the law of transforma­
tion of the other coefficients, 

_ dAT 

Nk = ANkA
T - A 

duk 

This law of transformation is formally exactly the same as the 
law which must be obeyed by coefficients of linear connection. 
This permits the statement of the following theorem concerning 
differentiation of complete tensors.* 

THEOREM. The operation of covariant differentiation on a com­
plete tensor, in which operation the differentiation is with respect to 
one of the parameters uk, and in which the quantities Nfa are used 

* That is, a set of quantities which are components of tensors in all the 
coordinate systems we are considering; the process we describe has been called 
complete differentiation (see E. H. Cutler, loc. cit.). 
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as connection coefficients for indices applying to the normal space, 
and in which the ordinary Chris toff el symbols, r | , are used as 
connection coefficients for indices appertaining to the tangent 
space, yields a complete tensor. 

The expression «SJa of the second of the integrability condi­
tions (3) is simply the Riemann tensor of the connection coeffi­
cients of the normal space. The analogy between the first and 
the second of these conditions is striking. The third of these in­
tegrability conditions is rewritten under the definition of covari-
ant differentiation just stated as 

AjbL?/ — AiLkj = 0. 

The anti-symmetry of the connection coefficients of the normal 
space reiterates the equivalence of covariance and contravari-
ance. 

4. Vanishing of the Riemann Tensors. I t may be that there 
exists a choice of the vectors tp such that the coefficients Nq

p1e 

vanish simultaneously; from the law of transformation of these 
coefficients, it is evident that a necessary and sufficient condition 
for the existence of such coordinates is that the coefficients have 
the form Nk= —A (dA T/duk) ; or, since the matrix A is orthogo­
nal, dA/duk = NkA. This equation is of the type whose solution 
for the matrix A may be expressed by product integrals ; we can 
find a solution over any particular path, but the solution must 
not depend on the path; that is, the variation of the product in­
tegral must vanish. A necessary and sufficient condition for this 
is the vanishing of the Riemann tensor of the normal connection 
coefficients, «SJM = 0 . The solution we obtain by means of such 
an integration for A is an orthogonal matrix, for it can be shown 
that the product integral of any anti-symmetric matrix is or­
thogonal if the matrix used as an arbitrary constant of integra­
tion is orthogonal. Hence, the vanishing of the Riemann tensor 
Sqjei is a necessary and sufficient condition for the existence of co­
ordinate systems for which all the Nq

vk vanish. 
The implications of the vanishing of this tensor are readily 

seen from the second of the integrability conditions (3); if we 
choose the parameters ul in such a way that at a point in which 
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we are interested the pi are unit mutually orthogonal vectors, 
then Vjj? = L\^ and the integrability condition becomes 

I Lia Lk$ 
\T* T8 I 

Now rotate the vectors so that one of the matrices, say If.., be­
comes a diagonal matrix, and the equation becomes 

Lik(Lii — Lick) = 0. 

This means that the vanishing of the tensor S^i implies that at 
every point on the variety there exists a set of mutually orthogonal 
vectors in the tangent space of such a nature that all the principal 
directions of all the Dupin indicating quadrics lie along these vec­
tors. This is evident when we notice that the equation implies 
either that the other matrices Ls.. are all diagonal when L\. is 
or that Lrn=Llk. If this last condition is true, the matrix L[. 
has no principal directions with respect to the indices i and k, 
and we may rotate the vectors pi and pu in their plane until the 
matrix Ls.. becomes a diagonal matrix without destroying the 
diagonal property of Lr... 

In the case of a surface in a euclidean four-space we can get 
more definite results. The vanishing of the tensor Sfai implies 
that the indicatrix of Wilson and Moore* degenerates into a 
straight line. Indeed, if we choose the coordinate axis y along 
the vector h and the axis z along fe, the indicating conic may be 
written parametrically 

y = Lu cos2 0 + 2JLI2 sin 0 cos 0 + £22 sin2 0, 
2 2 2 

z = Lu cos2 0 + 2L12 sin 0 cos 0 + £22 sin2 0. 
Because of integrability conditions and the vanishing of the 
tensor 5 ^ , these reduce immediately to the equation of the line 

1 r 1 r 2 1 

\ x — Lu y — i n _ 
\ r1 r2 I 
I J^12 ^ 1 2 I 

UNIVERSITY OF MICHIGAN 

* Wilson and Moore, Proceedings of the American Academy of Arts and 
Sciences, vol. 52 (1916), p . 324. 


