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is solvable if and only if 

k—m T . 

Pm(M) = £ jfp»'^±=i = o. 

It will be remarked that in general the first criterion is more 
useful. However, the latter is of some interest in itself. Further­
more, it suggests possible criteria for more general classes of con­
gruences; I hope to develop the matter elsewhere. 
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By a set of polynomials {Pn(x)}, (n = 0, 1, 2, • • • ) , we shall 
mean an infinite sequence in which Pn(x) is of degree exactly% n. 
Corresponding to a given set {Pn} there are infinitely many 
sequences of polynomials {Ln(x) ) (with Ln(x) of degree not ex­
ceeding n) and sequences of numbers {Xn} such that {Pn} satis­
fies the linear differential equation (usually of infinite order) 
with parameter:! 

(1) L[y(x)] m £ Ln(x)yM(x) - \y(x), 

which for X=Xn gives Pn(x). In fact, suppose {Pn} is given. 
Let {Xn} be any sequence of numbers subject only to the condi­
tion that Xn is not identically zero in n. Then a unique sequence 
{Ln(x)} exists such that L[Pn(x)] = XnPw(#), (n = 0, 1, • • • ), 
where not all the Ln's are identically zero, and where no Ln(x) 
is of degree exceeding n. The polynomial Ln(x) is readily ob­
tained by recurrence from L0, • • • , I w - i . If we write 

(2) Ln(x) = ln0 + lnlX + • • • + lnnXn, 

t Presented to the Society, April 25, 1935. 
X For many purposes it suffices to have Pn(x) of degree not exceeding «. 

Here, however, it is convenient to use the stricter condition. 
§ See Sheffer, American Journal of Mathematics, vol. 53 (1931), pp. 29-30, 

for a relation suggestive of (1). 
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where lnn and other coefficients may be zero, we shall have 

(3) Xn = ho + nln + n{n — l)/22 + • • • + nllnn. 

If we start with equation (1), that is, with the coefficients 
{Ln(x)}, and ask for what values of X there exists a polynomial 
solution, we find as a necessary condition that X have one of the 
values (3). Conversely, if X has any value Xn of (3), then there 
will correspond a polynomial solution Pn(x) which is unique to 
within a multiplicative constant, provided Xm^Xn, (m^n). 
Moreover, Pn(x) will be of degree exactly n, so that {Pn} is a 
set. In the case in which Xm =Xn for two (or more) distinct values 
of m and n, there may or may not be, for this common charac­
teristic number, as many linearly independent polynomial solu­
tions as the order of the characteristic number. 

DEFINITION. Let us suppose that equation (1) is given. If for 
each Xw given by (3) there is a polynomial solution Pn(x) of 
degree (exactly) n, we shall say that equation (1) is non-singular. 

COROLLARY. Equation (1) is non-singular if Xm7^Xn, ( m ^ « ) . 

If equation (1) is non-singular, but Xm=Xn for some rn^n, 
then if Pm and Pn are corresponding solutions of degree m and n, 
the polynomial aPm+bPn is also a solution, for every choice of 
a and b. In this case the equation does not define a unique^ set 
of polynomials {Pn}. 

Because of the property of equation (1) that any set {Pn(x)} 
is a set of solutions, (for a suitably chosen sequence {Ln(x)}), 
it seems appropriate to refer to (1) as a universal type equation 
for sets of polynomials. This comprehensive character of a type 
equation suggests that it may prove useful in the study of prop­
erties of sets of polynomials. We may propose the following pro­
gram. Given a set of polynomials, or a class of sets; to charac­
terize the type equations that they satisfy, and, in particular, to 
determine if (and when) they correspond to a type equation of 
finite order. 

The present note investigates these questions for the class of 
Appell sets of polynomials. 

The set \Pn) is an Appell set if we have the relations 

t We ignore the obvious arbitrary multiplicative constant attached to each 
P»(x). 
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dPn{x) 
(4) — ~ = Pn^(x)y (**= 1 ,2 , . • . ) . 

dx 

The following are well known characterizations of Appell sets, 
(i) A necessary and sufficient condition that {Pn} be an Appell 

set is that a formal power series 

(5) 

exist such that 

(6) 

0 

00 

We shall refer to A (t) as the generating f unction (or power series) 
for | P » ( * ) } . 

(ii) Set {Pn} is an Appell set if and only if there exists a sequence 
of numbers {an ) such that] 

xn xn—^ x® 
(7) Pn(x) = a0 — + ai- — + • • • + an—, 

n\ (n — 1)! 0! 
(» = 0, 1, • • • ) • 

THEOREM 1. Let {Pn} be any Appell set, with generating f unc­
tion A (/). Define the {formal) power series 

(8) B(f) ~ E bj» 
0 

by 

A'(t) 
(9) B(t) = -±!» 

A(t) 
Then [Pn\ satisfies the equation of type (1): 

t In both (6) and (7), in order that {Pn} be a true set, that is, for P„ to 
be of degree exactly n, it is necessary (and sufficient) that aoT^O. There is no 
great difficulty, however, if ao— • • • =a,k—0, ak+iT^O. For then Pn(x), as given 
by (6) and (7), is identically zero for 0^>n^k, after which we get Pn(x) of 
degree n-(k+l); and if we define B(t) by A(t) = tk+1B(t), then bo?*0, and the 
Appell set for B(t) is the same set as for A(t) after the first (& + 1) P's (which 
are identically zero) for A (t) have been omitted. 
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L[Pn(x)] s (40 + x)P£{x) + bxPn"(x) + 6,P»'"(*) + • • • 
(10) 

= nPn(x), (n = 0, 1, • • • ) . 

Conversely, if the set {Pn} satisfies the equation (10), where 
bo, bit - - • are constants, then (to within multiplicative constants) 
{Pn} is an Appell set, and its generating f unction A(t) is defined 
by (9). 

From (3) we see that \n = n for equation (10). Therefore 
Xm^Xw, (my^n), so that to each \ n corresponds an essentially 
unique polynomial, and it is of degree n. Suppose the set {Pn} 
satisfies (10). Let Po(x) =ao, and choose the multiplicative con­
stants so that in Pn(x) the coefficient of xn is ao/nl. I t is 
verified that P{ (x) = P0(x). Assuming that P{ (x) = Pk-i(x) for 
k = l, 2, - - - , n — 1, we shall prove it for k=n. Differentiating 
(10), we find that L[Pn' (x)] = (n- \)Pn' (x). Hence, since L is 
non-singular, we have Pn' (x) =cnPn-i(x). Comparing coeffi­
cients of xn~l, we find that cn = l. Hence {Pn} is an Appell set. 
Let its generating function be A(t)~^"ant

n, where a0 = Po as 
already stated. Then Pn(x) has the representation (7). If we sub­
stitute this in (10) and equate coefficients of like powers of x, 
we get the equations 

6O0n-/-i + Mn~/-2 + • • • + bn-j-i aQ = (n — j)an-j, 

(i = 0, 1 , . . . , » ) . 

But these relations are completely equivalent to relation (9), 
as is easily verified. The converse part of Theorem 1 is thus es­
tablished. 

Now let {Pn} be any Appell set, and let A (t) be its generating 
function. Let us define B(t) by (9), so that the coefficients of 
(10) are defined. Let {Qn\ be the Appell set defined by (10), 
of whose existence (and uniqueness if we choose Qo(x) =a0) we 
have just given proof. Then the generating function A*(t) for 
{Qn} is defined, by the part already proved, by the equa­
tion B(t)=A*'(t)/A*(t). Since i4 (0 )=4*(0)=a 0 , therefore 
A*(t)=A(t). Hence Qn(x)=Pn(x), (» = 0, 1, • • • ), so that 
{Pn} satisfies (10). This completes the proof. 

COROLLARY. A necessary and sufficient condition that a set 
{Pn} be an Appell set is that it satisfy the recurrence relations 
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(11) tlPn{%) = (b0 + x)Pn-!(x) + hPn-^x) -\ + Ô„_iPoO), 

For if {Pn} is an Appell set, it satisfies (10) and therefore (11). 
Now suppose {Pn} is a set satisfying (11). We verify at once 
that Pi =Po. Suppose Pi = P&_i, (£ = 1, 2, • • • , n—-1); to prove 
that Pu =Pw_i . If we differentiate (11) and use our induction 
assumption, we get nPn' =nPn-i, so that Pn ' =Pw_i, and the set 
{Pn} is an Appell set. 

Relations (10) and (11) give us two further characterizations 
of Appell sets. But they are not the only ones possible. For ex­
ample, if we want an equation (for Appell sets) of type (1) with 
\n=n(n — 1), then as was proved in Theorem 1, we obtain the 
equation 

(12) L[2] [Pn(x)] = n(n - 1)P»(*), 

where the operator L[2] is defined by the equation 

L%[y] = T,Lmn(x)y™(x) 
with 

(13) Lm(x; fl ~ E LWn(x)t» = ^[A" + 2xA' + x*A], 

where A (t) is the generating function for {Pn} . 
More generally, if {Pn} is an Appell set defined by A(t), then 

(14) Lw [Pn(x)] = n(n - 1) • • • (n - k + l)Pn(x), 

where 

LW(x; 0 ~ S Lmn(x)t* = —A \A(*> + — xA(*-» 
w=o A L 1! 

- xhA . ! J 

n—0 

(15) 
*(ft - 1) k\ 

2! * 

Now suppose that we wish Xn to be a polynomial in n. We can 
suppose thatf X0 = 0. Then we have 

Xw = nln + n(n — l)l22 + • • • 

+ » ( » - ! ) • • • ( » - * + 1)/**, 
t For this merely serves to alter the (constant) value of LQ(X), and does not 

affect the polynomials Ln(x) of index n>0. 
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where lu, • • • , / * * are constants (that is, independent of n). Ex­
actly as in Theorem 1, we obtain the following result : 

THEOREM 2. Let {Pn} be any Appell set and A(t) its generating 
function. Let {Xw} be given by (16) for any k ^ 1. Then {Pn} satis­
fies the equation 

(17) L[PH(X)] ^ £ Lr(x)Pn\x) = \nPn(x), 

where L is defined by 

00 

(lo) r=o 

~ /ni[ i ] (^; /) + h2L[2\(x) / ) + • • • + hkL[k](x; / ) , 

the functions L[P](x; t) being given by (15). Conversely, given (17) 
wi/ft Z, defined by (18) /or a?ry function A(t), then there exists an 
Appell set of polynomials^ {Pn} satisfying (17), and its generat­
ing function is precisely A (t). 

We proceed to characterize the equations of type (1) that de­
fine one and the same Appell set. 

THEOREM 3. Let {Pn} be an Appell set, and A(t) its generating 
function. A necessary and sufficient condition that the set {Pn\ be 
a solution of an equation of type (1) {with X0 = 0, which is no re­
striction) is that the operator L[y\=^^JLn(x)y(n)(x) be defined% 
by 

00 00 

(19) L(x; t) ~ Y<Ln(x)tn~ ] £ hkL[k](x; t), 

where L[k)(x; t) is given by (15), and the hk's are constants. The 
characteristic numbers {Xn} are given by (3). 

t If XTO3 \̂„, (m^n), then this Appell set gives all the polynomial solutions 
of (17) (to within multiplicative constants). But if wand n (distinct) exist such 
that XOT = Xn, this Appell set does not include all the polynomial solutions of 
(17). 

% Although the last series in (19) may not converge, yet it serves to deter­
mine a unique sequence of polynomials L\(x), L%{x), • • • which are the coeffi­
cients of equation (1). For L[k] (x; t), expressed as a power series in t, begins with 
a term in tk. Hence Ln(x), which is the coefficient of tn in L(x; t), is given by a 
finite sum, namely, the coefficient of tn in the s\xmY^l=ihkL[k\{x; t). 
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First we shall show that for any sequence of numbers {hk} 
the Appell set {Pn} satisfies equation (1) with L defined by (19). 
Let 

L (x; 0 = 2 hkL[k](x; t) ~ ^ Lr (x)t , 

where n is any positive integer. The remark of the last footnote 
shows that Lr

[n](x) =Lr(x), (r = 0, 1, • • • , n). Now, by Theorem 
2, we have 

LM[Pr(x)] = {flu + r(r - l)/22 + • • • + r\lrr}Pr(x) 

= \rPr(x), (f = 0, 1, • • • ) . 

Hence 

L[Pr(x)) = LM[Pr(x)] = \rPr(x), (f = 0, 1, • • • , » ) ; 

and inasmuch as n can be chosen arbitrarily, it follows that 
L[P r (x)] =\rPr(x) for all r. That is, {Pn} satisfies equation (1). 

Conversely, suppose the Appell set {Pn} satisfies equation 
(1) (with X0 = 0) ; we shall show that L is defined by (19) for suit­
ably chosen numbers {hk} - Define {hk} by (3), and with this 
choice of {hk} y define an operator L* by (19): 

00 

L*(x; t) ~ 2 hkL[k](x; t), 
k=l 

where the function A(t) of (15) is the generating function for 
{ P n } . From the half of the theorem already established, {Pn} 
satisfies the equation L*[y] =X*;y, the set {Xn*} being given by 
(3). But {Xn} also is given by (3), so that Xn*=Xw. Subtracting 
the two equations, we find 

(L-L*)[Pn] = 0, (** = 0, 1, . . . ) • 

If we set w = 0, 1, • • • successively, we find that 

LQ(X)—LÇF(X)=LI(X)—L?(X)= - • - =Ln(x)~L£(x)= • • • = 0 . 

That is, L * = L . This proves the converse. 
We next determine the condition that an Appell set satisfy 

a finite order equation of type (1). Two well known examples are 
the polynomial sets {(x — a)n/n\} and {Hn(x)}, the latter being 



1935-1 APPELL POLYNOMIALS 921 

the Hermite polynomials. They satisfy the following equations, 
respectively : 

L[y(x)] s (* - a)y'(x) = \y(x), (X» = n); 

L[y(x)] s 2xy'(x) - y"(x) = \y(x), (Xn = 2»). 

The corresponding generating functions are respectively 
A(t)=er«* and A(t)=er*i*. 

THEOREM 4. 4̂ necessary and sufficient condition that an Appell 
set {Pn}, with generating f unction A (/), satisfy a finite order equa­
tion of type (1) is that A(t) have the form 

(20) A(t) = *><«>, 

wAere <2(0 w # polynomial. 

Suppose that A(t) has the form (20), where Q is of degree k. 
Then from (9), B(t)=Q'(t), a polynomial of degree k — l, so 
that J?( / )=6o+ôi /+ • • • +ô*-i^*~1. The universal equation (10) 
for Appell polynomial sets therefore reduces to 

L[P»(x)] = (bo + x)Pi{x) + hPn"(x) + • • • + bk-iP?\x) 

= nPn(x), (n = 0, 1, • • • ) , 

and this is an equation of finite order (namely, order k). 
Conversely, suppose the Appell set {Pn} satisfies a finite 

order equation of type (1); we shall show that its generating 
function A(t) has the form (20). Let the equation be 

L[Pn(x)} S L0(x)Pn(x) + • • • + Lk(x)P(n\x) = XnPn(x), 

( » - o f i , . . . ) . 

As already pointed out, we may suppose that X0 = 0 (so that 
LQ(X) = 0 ) . If we write Ln(x) in the form (2), then Xn is given by 
(3), but since Ln(x)s=0, (n>k), Xn reduces to the form (16). 
Let L[k](xm, f), (fe = l, 2, • • • ), be the functions of (15), and de­
fine the operator L* by L*(x; t) =^2k

r=1lrrL[r](x; /), where A(t) 
is the generating function for {Pn} . Then {Pn} satisfies (by 
Theorem 2) the equation L*[Pn] =XW*PW, where Xn* is deter­
mined by (16). Since (16) was used to determine Xn, it follows 
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that Xn*=Xn for all n. Hence (as was argued before) we have 
L* = L. That is, the given equation for {Pn} is defined by 

k 

(a) L(x; /) = 2 lrrL[r](x; / ) . 
r=l 

But to begin with we had 

k 

(b) L(x;t) = J^Lr(x)t'. 

Hence 

k k 

(c) X ) lrrL[r)(x; t) = ] £ Lr(x)tr. 
r=l r=l 

Let 

(d) • = ar0 + ari t + • • • , (r = 0, 1, • • • , k). 
A(t) 

Expanding the left member of (c) in a power series in /, and 
observing (from the right member) that powers of / higher than 
the &th degree cannot occur, we obtain the equations 

hl{cL\n) + fe^.n-l + 2^f l i ,n- l ) + • • • 

/ k 
, s + hk[ a>k,n-k+i + 77 xaA;-i,n-fc+i + • • • 
(e) \ 1 ! 

k(k - 1) - • • 2 \ 
+ ( t - 1)1 xk~la^-^ ) = °> (» = *>• 

These relations are to hold identically in #. Of the numbers 
1, • • • , k, let 5 be the largest for which l88?*0. I t then follows 
from (e) that 

(f) ai,n-*+i = 0, (n ^ k). 

That is, 

A(t) 
= J5(/) = a10 + <m< H + <*!,*_, **-, 
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so that (20) holds, where Q(t) is a polynomial of degree k—s + 1. 
This completes the proof. 

If the Appell set {Pn} satisfies an equation of type (1) of 
finite order, then there are infinitely many other equations (of 
type (1)) of finite order for which the set is a solution. For ex­
ample, from L[Pn] =\nPn follows L2[Pn] =Xn

2Pn, Lz[P„] =Xw
8Pn, 

• • • . This raises the question : What is the minimum order of all 
equations satisfied by {Pn} ? The answer is given by the follow­
ing statement. 

THEOREM 5. Let the Appell set {Pn} satisfy a finite order equa­
tion of type (1), so that its generating function A (t) is given by (20). 
Then the minimum order of all equations {of type (1)) satisfied by 
[Pn] is precisely the degree^ of the polynomial Q{t). 

Let Q(t) be of degree m. That the minimum order k cannot ex­
ceed m is shown by the proof of the first half of Theorem 4, so 
that k^m. Let J L[Pn]=\nPn be the equation of minimum 
order k. From the proof of the second part of Theorem 4, we 
see that there is an integer s for which l^s^k, and such that 
Q(t) is of degree k — s + 1. That is, m = k — s+1. But k^m, so 
that k^k — s + 1. This requiresr that 5 = 1, from which follows 
the desired conclusion that k = m. 

PENNSYLVANIA STATE COLLEGE 

t The single exception is when Q(t) is of degree zero, in which case A (t) is a 
constant and Pn(x)=*cxn/n\. This set satisfies a first order equation. 

% As usual it is no restriction to suppose, as we do, that X0 ̂ O. 


