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is solvable if and only if

k—m Lompi
pm(M) = 3 M =,
=0 L;

It will be remarked that in general the first criterion is more
useful. However, the latter is of some interest in itself. Further-
more, it suggests possible criteria for more general classes of con-
gruences; I hope to develop the matter elsewhere.
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By a set of polynomials {P,,(x)}, (n=0,1, 2, ), we shall
mean an infinite sequence in which P,(x) is of degree exactly} n.
Corresponding to a given set {P,,} there are infinitely many
sequences of polynomials {Ln(x)} (with L.(x) of degree not ex-
ceeding 7) and sequences of numbers {\,} such that {P,} satis-
fies the linear differential equation (usually of infinite order)
with parameter:§

(1) Lly(®)] = 3 La(x)y™(2) = My(a),

which for A=\, gives P,(x). In fact, suppose {Pn} is given.
Let {\,} be any sequence of numbers subject only to the condi-
tion that N\, is not identically zero in #. Then a unique sequence
{L.(x)} exists such that L[P,(x)] =N.P.(x), (=0, 1,---),
where not all the L,’s are identically zero, and where no L,(x)
is of degree exceeding #. The polynomial L,(x) is readily ob-
tained by recurrence from Ly, - - -, L. If we write

(2) Ln(x) =lno+ b+ - + lrmx”;

t Presented to the Society, April 25, 1935.

1 For many purposes it suffices to have P,(x) of degree not exceeding #.
Here, however, it is convenient to use the stricter condition.

§ See Sheffer, American Journal of Mathematics, vol. 53 (1931), pp. 29-30,
for a relation suggestive of (1).
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where /., and other coefficients may be zero, we shall have
3) Mo =loo+ nlyy+ nln — Vilgg + - -+ + nll,,.

If we start with equation (1), that is, with the coefficients
{L.(x)}, and ask for what values of \ there exists a polynomial
solution, we find as a necessary condition that X\ have one of the
values (3). Conversely, if X has any value A\, of (3), then there
will correspond a polynomial solution P,(x) which is unique to
within a multiplicative constant, provided N.#N,, (ms£n).
Moreover, P,(x) will be of degree exactly #, so that {P,} is a
set. In the case in which \,, =\, for two (or more) distinct values
of m and #, there may or may not be, for this common charac-
teristic number, as many linearly independent polynomial solu-
tions as the order of the characteristic number.

DEeFINITION. Let us suppose that equation (1) is given. If for
each N\, given by (3) there is a polynomial solution P,(x) of
degree (exactly) n, we shall say that equation (1) is non-singular.

CoROLLARY. Equation (1) is non-singular if Nm5=X,, (m=n).

If equation (1) is non-singular, but \,,=\, for some m=n,
then if P,, and P, are corresponding solutions of degree m and #,
the polynomial aP,,+bP, is also a solution, for every choice of
a and b. In this case the equation does not define a uniquet set
of polynomials {P,}.

Because of the property of equation (1) that any set {P,.(x)}
is a set of solutions, (for a suitably chosen sequence {L.(x)}),
it seems appropriate to refer to (1) as a universal type equation
for sets of polynomials. This comprehensive character of a type
equation suggests that it may prove useful in the study of prop-
erties of sets of polynomials. We may propose the following pro-
gram. Given a set of polynomials, or a class of sets; to charac-
terize the type equations that they satisfy, and, in particular, to
determine if (and when) they correspond to a type equation of
finite order.

The present note investigates these questions for the class of
Appell sets of polynomials.

The set {P,} is an Appell set if we have the relations

t We ignore the obvious arbitrary multiplicative constant attached to each
P, (x).
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dP,(x)

(4) T

= P,1(x), (n=1,2,---).

The following are well known characterizations of Appell sets.
(i) A necessary and sufficient condition that { P} be an Appell
set is that a formal power series

Q) A(t) ~ 2 antr
0

exist such that

(6) e A(t) ~ D Pu(x)tr.
0

We shall refer to 4 () as the generating function (or power series)
for {P.(x)}.
(ii) Set {Pn} is an A ppell set if and only if there exists a sequence
of numbers {a.} such thatt
xn-l xO

xn
(7 Pn(x)=ao;!+a1—(n—_‘_—1‘)—!+'--+a,.a,
(n=0,1,---).
THEOREM 1. Let {P,,} be any A ppell set, with generating func-
tion A(t). Define the (formal) power series

(8) B(t) ~ i‘, A
by
%9 B(t) = 10

Then {Pn} satisfies the equation of type (1):

t In both (6) and (7), in order that {P,,} be a true set, that is, for P, to
be of degree exactly #, it is necessary (and sufficient) that a¢70. There is no
great difficulty, however, if ao= - + + =ar=0, ar417%0. For then P,(x), as given
by (6) and (7), is identically zero for 0 <z <k, after which we get P.(x) of
degree n—(k+1); and if we define B(¢) by A4 (¢) =¢*t1B(¢), then bo0, and the
Appell set for B(t) is the same set as for 4 (¢) after the first (¢+1) P’s (which
are identically zero) for 4 (f) have been omitted.
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o L[P.(x)] = (bo + @) P! (x) + b:1P)" (%) + boPl" (x) + - - -
(10) nP,(x), (n=20,1,---).

I

Conversely, if the set {Pn} satisfies the equation (10), where
bo, by, - - - are constants, then (to within multiplicative constants)
{P.} is an Appell set, and its generating function A(t) is defined
by (9).

From (3) we see that N,=# for equation (10). Therefore
An#Nn, (m#n), so that to each N, corresponds an essentially
unique polynomial, and it is of degree n. Suppose the set {Pn}
satisfies (10). Let Py(x) =a,, and choose the multiplicative con-
stants so that in P,(x) the coefficient of x* is ao/n!. It is
verified that P{ (x) = Py(x). Assuming that Py (x) = P;_i(x) for
k=1,2,.--, n—1, we shall prove it for k=n. Differentiating
(10), we find that L[P,! (x)]=(n—1)P, (x). Hence, since L is
non-singular, we have P,/ (x)=c,P,-1(x). Comparing coeffi-
cients of x*~1, we find that ¢,=1. Hence {P,} is an Appell set.
Let its generating function be A(t)NZ: at*, where ag=P, as
already stated. Then P,(x) has the representation (7). If we sub-
stitute this in (10) and equate coefficients of 1.ke powers of x,
we get the equations

boln—j—1+ b18n_j2+ -+ -+ bu_jo1 @0 = (n — J)Anj,
(j=071y"',")-

But these relations are completely equivalent to relation (9),
as is easily verified. The converse part of Theorem 1 is thus es-
tablished.

Now let { P, } be any Appell set, and let 4 () be its generating
function. Let us define B(¢) by (9), so that the coefficients of
(10) are defined. Let {Q.} be the Appell set defined by (10),
of whose existence (and uniqueness if we choose Qo(x) =ap) we
have just given proof. Then the generating function 4*(z) for
{Qn} is defined, by the part already proved, by the equa-
tion B(t) =A*'(t)/A*(). Since A(0)=A*(0)=a, therefore
A*(t)=A(). Hence Q.(x)=P,(x), (=0,1,---), so that
{P,,} satisfies (10). This completes the proof.

COROLLARY. A mnecessary and sufficient condition that a set
{P,,} be an Appell set is that it satisfy the recurrence relations
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(11) nPu(x) = (bo + %) Pp1(®) + b1Ppa(%) + - -+ + ba1Po(),
(n=20,1,---).

For if {Pn} is an Appell set, it satisfies (10) and therefore (11).
Now suppose {Pn} is a set satisfying (11). We verify atonce
that P{ =P,. Suppose Py =Py, (k=1,2, .- ,n—1);to prove
that P,/ =P,_;. If we differentiate (11) and use our induction
assumption, we get P,/ =nP,_;, so that P,/ =P,_;, and the set
{Pn} is an Appell set.

Relations (10) and (11) give us two further characterizations
of Appell sets. But they are not the only ones possible. For ex-
ample, if we want an equation (for Appell sets) of type (1) with
A.=n(n—1), then as was proved in Theorem 1, we obtain the
equation

(12) Ligy [Pa(#)] = n(n — 1)Pu(a),
where the operator Ly is defined by the equation

. Le[y] = 20 Ligia(2)y ™ (%)
with

© t2
(13)  Lpy(x;8) ~ 22 Lyga(a)in = Z[A” + 224" + a?4],
n=0
where A (¢) is the generating function for {P,}.
More generally, if {P,} is an Appell set defined by 4 (¢), then

(14) Lig[Pu(®)] = n(n — 1) - - - (n — k + 1) P,(x),

where

* ik k
L (w; 8) ~ 22 La(®)tm = vl A® + T x4 B=D

n=0

(15)

w24 =2 4 ... gkg
k!

Bk — 1) k!
+ 21 ]

Now suppose that we wish A\, to be a polynomial in #z. We can
suppose thatt Ap=0. Then we have

)\n=”lll+”(n_1)l22+"'
+nn—-1)---(n—k+ D,

t For this merely serves to alter the (constant) value of Lo(x), and does not
affect the polynomials L,(x) of index n>0.

(16)
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where Iy, - - -, i, are constants (that is, independent of #). Ex-
actly as in Theorem 1, we obtain the following result:

THEOREM 2. Let {P,,} be any Appell set and A (t) its generating
function. Let {\,} be given by (16) for any k=1. Then { P,} satis-
fies the equation
(17) L[Pa(®)] = 3 L5 P (5) = \aPa(s),

r=0

where L is defined by

(18) L(x;8) ~ ;0 L. (x)tr

= IuLm(x; 8) + loeLyay (5 2) + - - - + Il (w5 ),

the functions Ly (x; t) being given by (15). Conversely, given (17)
with L defined by (18) for any function A(t), then there exists an
Appell set of polynomialst {Pn} satisfying (17), and its generat-
ing function is precisely A(%).

We proceed to characterize the equations of type (1) that de-
fine one and the same Appell set.

THEOREM 3. Let {P,.} be an Appell set, and A () its generating
function. A necessary and sufficient condition that the set {P,} be
a solution of an equation of type (1) (with No=0, which is no re-
striction) is that the operator L{y]=." L.(x)y™(x) be definedt
by

n=0

(19) L(; ) ~ 3 Lot~ 3 I g (35 1),

n=0 k=1

where Lyx(x; t) is given by (15), and the lxi’s are constants. The
characteristic numbers {\.} are given by (3).

1 If A\, (m5%n), then this Appell set gives all the polynomial solutions
of (17) (to within multiplicative constants). But if m and » (distinct) exist such
that A, =X\,, this Appell set does not include all the polynomial solutions of
17).

1 Although the last series in (19) may not converge, yet it serves to deter-
mine a unique sequence of polynomials L;(x), Ls(x), - - - which are the coeffi-
cients of equation (1). For Lxj(x; t), expressed as a power series in ¢, begins with
a term in t*, Hence L,(x), which is the coefficient of #* in L(x; ¢), is given by a
finite sum, namely, the coefficient of ¢ in the sum Y, _ sz Lz (x; £).
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First we shall show that for any sequence of numbers {ly}
the Appell set { P,} satisfies equation (1) with L defined by (19).
Let

[l z N Inl,

L% (x50 = 2 lalm(w;0) ~ 2 L ()¢,
k=0 r=0

where # is any positive integer. The remark of the last footnote

shows that L,I"(x) =L,(x), (=0, 1, - - - , n). Now, by Theorem

2, we have

L [P (x)] = {rlu+ r(r — Dlaa + - - - + rli} Po(2)
= MP.(x), (r=0,1,---).
Hence
L[P,(x)] = LM[P,(x)] = MP(x), (r=0,1,---,n);

and inasmuch as # can be chosen arbitrarily, it follows that
L[P.(x)] =\.P,(x) for all . That is, {Png satisfies equation (1).

Conversely, suppose the Appell set P,.} satisfies equation
(1) (withX\y=0); we shall show that L is defined by (19) for suit-
ably chosen numbers {li.}. Define {I} by (3), and with this
choice of {lkk}, define an operator L* by (19):

L*(w; ) ~ 22 Ly (x5 8),
k=1
where the function 4 (¢) of (15) is the generating function for
{P.}. From the half of the theorem already established, {P,}
satisfies the equation L*[y] =\*y, the set {)\n*} being given by
(3). But {)\n} also is given by (3), so that \,* =\,. Subtracting
the two equations, we find

(L —L®[P.] =0, (n=20,1,--+).
If we set =0, 1, - - - successively, we find that
Lo(x)—L§f(x)=Li(x)—Li¥(x)= - - - =Lu(x)—L¥(&x)= .- =0.

That is, L*=L. This proves the converse.

We next determine the condition that an Appell set satisfy
a finite order equation of type (1). Two well known examples are
the polynomial sets { (x—a)"/x!} and {H,,(x) }, the latter being
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the Hermite polynomials. They satisfy the following equations,
respectively:

Lly@®)] = (» — a)y'(x) = My(a), (An = n);
Lly(x)] = 2xy'(x) — y"(x) = My(x), (A = 22).

The corresponding generating functions are respectively
A(t) =€t and A(f) =e*I4,

THEOREM 4. 4 necessary and sufficient condition that an A ppell
set {Pn }, with generating function A(t), satisfy a finite order equa-
tion of type (1) is that A (¢) have the form

(20) A(t) = e,
where Q(8) is a polynomial.

Suppose that 4 (¢) has the form (20), where Q is of degree k.
Then from (9), B(¢)=Q’(¢), a polynomial of degree k—1, so
that B(t) =bo+bit+ - - - +br-at*1. The universal equation (10)
for Appell polynomial sets therefore reduces to

L[Pu(®)] = (B0 + 0P/ (2) + P (2) + - -+ + baaPa” (%)

= nP,(x), (n=0,1,--+),

and this is an equation of finite order (namely, order k).

Conversely, suppose the Appell set {P.} satisfies a finite
order equation of type (1); we shall show that its generating
function A4 (¢) has the form (20). Let the equation be

L[Pa(%)] = Lo(x)Pu(x) + - -+ + L(0) Py (2) = \Pa(x),
(’}'L=O,1,"').

As already pointed out, we may suppose that Ag=0 (so that
Lo(x) =0). If we write L,(x) in the form (2), then \, is given by
(3), but since L.(x)=0, (>k), N\, reduces to the form (16).
Let Lyy(x; ¢), (B=1, 2, - - - ), be the functions of (15), and de-
fine the operator L* by L*(x; ¢) =Zf=1lrrLlrl (x; t), where A(?)
is the generating function for {P,}. Then {P.} satisfies (by
Theorem 2) the equation L*[P,]=\*P,, where \* is deter-
mined by (16). Since (16) was used to determine \,, it follows
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that A=\, for all n. Hence (as was argued before) we have
L*=L. That is, the given equation for {P,} is defined by

k
(a) L(x; 8) = 2 bnLin (5 ).
r=1
But to begin with we had
k
(b) L(x; 8) = 2 Li(x)tr.
r=1
Hence
k k
(c) Z lwLin(x;8) = Z L.(x)t.
r=1 r=1
Let
A (r)(t)
(d) =ao+ant+---, (r=0,1,---,k).

A()

Expanding the left member of (c) in a power series in £, and
observing (from the right member) that powers of ¢ higher than
the kth degree cannot occur, we obtain the equations

lll(aln) + 122(02.»—1 + 2xdl,n—1) + .-

k
© + lik (ak,n—k+1 + 1 XOk—1,n—k41 + ¢ *
k(k—1)---2

(k — 1)! xk—l""""‘“) =0, (nz A

These relations are to hold identically in x. Of the numbers
1, - - -, k, let s be the largest for which /,,0. It then follows
from (e) that

(f) a1, n—st1 = 0, (ﬂ = k).
That is,
A'@)

.A_(t; = B() = a0+ a1t + + - - + a1,5—5 t¥0,
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so that (20) holds, where Q(¢) is a polynomial of degree £ —s+1.
This completes the proof.

If the Appell set {P,,} satisfies an equation of type (1) of
finite order, then there are infinitely many other equations (of
type (1)) of finite order for which the set is a solution. For ex-
ample, from L[P,]=\,P, follows L*[P,] =\2 P,, L}[P,] =\} P,,

- - - . This raises the question: What is the minimum order of all
equations satisfied by {P,}? The answer is given by the follow-
ing statement.

THEOREM 5. Let the A ppell set {P,.} satisfy a finite order equa-
tion of type (1), so that its generating function A (8) is given by (20).
Then the minimum order of all equations (of type (1)) satisfied by
{Pn} is precisely the degreet of the polynomial Q(2).

Let Q(¢) be of degree m. That the minimum order k cannot ex-
ceed m is shown by the proof of the first half of Theorem 4, so
that k<m. Let} L[P,]=M.P, be the equation of minimum
order k. From the proof of the second part of Theorem 4, we
see that there is an integer s for which 1<s<k, and such that
Q(t) is of degree k—s+1. That is, m=k—s+1. But 2=<m, so
that <k —s-41. This requires that s=1, from which follows
the desired conclusion that k=m.

PENNSYLVANIA STATE COLLEGE

1 The single exception is when Q(#) is of degree zero, in which case 4(¢f) isa
constant and P,(x) =cx"/n!. This set satisfies a first order equation.
1 Asusual it is no restriction to suppose, as we do, that A¢=0.



