
ON T H E COMPLEX ROOTS OF 
ALGEBRAIC EQUATIONS* 

BY A. J. KEMPNER 

1. Introduction. The topic I have chosen is so vast that a sys­
tematic treatment in an address is impossible. I shall, therefore, 
restrict my report to some phases of the problem to which I 
have made contributions, and to such papers as deal with re­
lated questions and which have come to my notice. 

I sincerely appreciate this opportunity to bring together the 
results of several articles, all dealing more or less directly with 
the problem of complex roots, but scattered in various journals 
over a period of many years. 

Our equations are always polynomials, equated to zero, and, 
unless otherwise stated, with real coefficients. The notation 
fn(z) = 0 indicates that the equation is of degree n. Merely to an­
swer the question whether equations of high degree are ever 
actually solved, it may be pointed out that a table of natural 
sines and cosines, say for every 1", is nothing but a complete 
tabulation of the solutions of the equation x1296000 — 1 = 0 . 

2. On Equations with Roots eid. We have in the literature many 
theorems on equations with roots of absolute value unity. One 
of the most interesting of these is Kronecker's theorem : 

If the coefficients of an equation are ordinary integers, if the 
coefficient of the highest power is unity, and if all roots are of ab­
solute value unity, then all the roots are roots of unity, and the 
equation is therefore solvable by radicals. 

A companion theorem is as follows. 
With the same restrictions on the coefficients, if all roots are real 

and of absolute value <2, the roots are all of the form 2 cos wk, 
where k is rational. 

In two short notesf I have derived necessary and sufficient 
conditions tha t an equation have some, or all, of its roots of 
the form eie. 

* An address presented to the Society, by invitation of the program com­
mittee, Lincoln, Nebraska, November 30, 1934. 

f Kempner, Archiv der Mathematik und Physik, (3), vol. 25 (1916), pp. 
236-242. Kempner, Tôhoku Mathematical Journal, vol. 10 (1916), pp. 115-
117. 
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THEOREM 1. To test any equation fn(z) = 0 with real coefficients 
for roots of the form eid>form the following polynomial, which has 
real coefficients and which contains only even powers of z : 

The equation fn(z) = 0 has among its roots some of the form eid 

when and only when \f/n(u) = 0 has some positive roots. A necessary 
and sufficient condition that all roots of fn(z) = 0 be of the form 
eid is that \{/n(u) = 0 have only positive roots. 

For proof we have only to remember that z — {ziJri)/{z1 — i) 
transforms the unit circle in the z plane into the axis of reals 
in the %\ plane. The theorem may be extended in an obvious 
fashion to equations with complex coefficients, by considering 
f{z) -f(z) = F(z) in place of ƒ(z). I t is clear that the theorem ap­
plies to much wider classes of functions than polynomials. If 
&n(u)=0 has only real positive roots, and if, in addition, the 
coefficients o f / w (^ )=0 are real integers and the coefficient of 
the highest power is unity, the roots of /n(^)=0 are roots of 
unity; and, by Kronecker's theorem, the equation fn(z) = 0 is 
solvable by radicals. 

Making use of the inverse transformation Zi = i(z + l)/(z — 1) 
and retracing our steps, we now start from a given equation 
0w(s) =aoZn+aizn~1+ • • • +an = 0 whose roots are all real, and 
form the new polynomial 

/ z + 1\ / z + 1\ 
M) = (* - 1)2*<K I i —— Unf ~ * ^ ~ M ' 

If 0n(s) has integral coefficients, the coefficients of 1/^(2) are 
also integers. I t is easily seen that the coefficient of z2n in 
yp2n{z) is (#0-02 + 0 4 - - + * * ' ) 2 + (#1 - 03 + ^5 — + * * ' )2=Y, 
say. If 7 = 1, ^2w(^)=0 satisfies the conditions of Kronecker's 
theorem. Hence yp%n{z) = 0 is solvable by radicals, and hence also 
<t>n{z) = 0 is solvable by radicals. 

THEOREM 2. Suppose that <j>n(z) =a0z
n+aizn~1+ • • • +# w = 0 

has real integral coefficients and that all its roots are real. If 
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(do — 0,2+0,4—h • • • )2 + (#i —a3+a5—I" ' ' * )2=:1> ^e equa­
tion is solvable by radicals.* 

3. On Equations with Roots a+peid, where a and p are Rational. 
Of greater interest is the investigation of irreducible equations 
admitting roots of the form a+peid> where a and p are both ra­
tional, f Hand in hand with these equations go those admitting 
roots of the form a+peid, where a and p2 are rational. 

We first characterize geometrically the set of points in the 
plane of complex numbers corresponding to the set of numbers 
a+peid, where a and p are rational. The numbers are repre­
sented by the doubly infinite set of circles whose centers are at 
rational points on the axis of reals, and whose radii are rational. 
We shall call this set of circles, or the corresponding set of num­
bers, the set S. 

Similarly, we shall represent the set of numbers a -\-peie, where 
a and p2 are rational, by a corresponding doubly infinite set of 
circles, and we shall call this set of circles, or the set of numbers, 
the set C. 

We shall consider the class of irreducible equations that have 
any complex roots on any circle 5. For simplicity, unless other­
wise stated, we shall assume that the coefficients are integral 
and tha t the equation is irreducible in the natural domain. This 
class consists of : 

(1) all irreducible equations ƒ (JS) = 0 that have any (not neces­
sarily all) complex roots of absolute value 1 ; 

(2) all equations derived from (1) by subjecting ƒ (z) to a non-
singular linear transformation z = (azi+b) / (cz±+d) whose coeffi­
cients are real and rational. 

In particular, all irreducible quadratic equations with ra­
tional coefficients and negative discriminant belong to this class. 
The case (1) contains as a subclass all cyclotomic equations of 
prime degree. 

I t turns out that if an irreducible equation with rational co­
efficients has any root on a circle 5, or C, the roots are sym-

* A systematic examination of applications of Kronecker's theorem may 
seem desirable. Compare also D. H. Lehmer's article referred to at the end of 
the next section. 

f Kempner, On irreducible equations admitting roots of the form a+petd, • • •, 
Tôhoku Mathematical Journal, vol. 13 (1918), pp. 253-265. 
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metrically distributed with respect to this circle. In this state­
ment, two points are called symmetric with respect to a circle 
when each is the image of the other under transformation by 
reciprocal radii. This represents a natural extension of the sym­
metry property of the axis of reals for all equations with real 
coefficients. 

THEOREM 3. When an irreducible equation has a complex root 
of the form a+peid, where a and p2 are rational and where p is 
positive, but may be either rational or irrational, the roots of the 
equation are distributed in the following manner : 

(1) Besides a+pe±ie there may be other pairs of complex roots 
with the same a and the same p, that is, of the f or m a-\-pe±ieK 

(2) If a is a real root, p2/a is a root. 

(3) Any complex root not contained in (1) may, of course, be 
written in the f or m a + re**, with the same a. Then the four num­
bers a+re±i(l>, a + (p2/r)e±i<f> are all contained among the roots of 
the equation. 

The complete extension of the symmetry property of the axis 
of reals, insofar as I can see, may be stated as follows. Let 
f(z) =zn+aizn~l+ • • • +an = 0 be an equation with real, but 
otherwise arbitrary, coefficients, irreducible in the domain 
R(ai, #2, • • • , an), and let us assume that f(z)=0 has a root 
of the form a+peie, where a and p2 are both rationally expres­
sible in terms of a\, • • • , an with rational numerical coefficients. 
Then all roots of ƒ (2) —0 are distributed in the plane of complex 
numbers symmetrically to the axis of reals and to the circle 
a+peie. We may state also the following theorems. 

THEOREM 4. When an irreducible equation (in R(l)) with real 
coefficients has any complex root on any circle C, or on any straight 
line parallel to the axis of imaginaries and at a rational distance 
from it, the roots are symmetrically distributed with respect to this 
circle or straight line. 

THEOREM 5. The points of intersection of two circles S, which 
form a set that is everywhere dense in the complex plane, are exactly 
the set of roots of the class of irreducible equations az2+bz+c = 0, 
where a, b, and c are rational and b2 — 4ac<0. In other words, the 
set of points of intersection of S are exactly the set of all complex 
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irrationalities. The real quadratic irrationalities are given by the 
points of the axis of reals belonging to C, but not to S. 

It is easily shown that the complex (not real) points of the 
set of intersections of circles of the set C are the same as the 
complex (not real) points of the set of intersections of the set S. 
Through each point of intersection of two circles S (or C) pass 
an infinite number of circles S (or C). 

Therefore, any imaginary quadratic irrationality may be 
represented in an infinite number of ways by the form a+peid, 
where a and p are rational, but any root of an irreducible equa­
tion of degree n>2 can be represented in at most one way 
in this form. Consequently, for n>2, the equation a\+pieidl 

= a2+P20^2, where a\, a2, pi, and p2 are rational and where pi 
and p2 are positive, implies that ai = a2 and that pi =p2. 

I t follows from the preceding theorems that if an irreducible 
equation of degree n > 2 has roots on a circle S, these roots can­
not be among the points of intersection of circles S. 

THEOREM 6. An irreducible equation cannot have roots on more 
than one circle S unless the circles intersect. On every circle S lie 
roots of irreducible equations of degree n>2, some of whose other 
roots lie on intersecting circles. 

THEOREM 7. An irreducible equation f {z) = 0 can have two roots 
ai+pieidl, a2+p2eid*, where cei, a2, pi, and p2 are all rational and 
ax^ai, only when \p\—p2\ <\a\ — a2\ <pi+p2. 

THEOREM 8. When an irreducible equation f {z) = 0 has complex 
roots of the form z = a+peid, where a and p are rational, a and p 
may be found by a finite number of rational operations and the 
extraction of a square root. Therefore, if such an equation has a 
root on any circle S, this circle, but not necessarily the root itself, 
can be constructed by ruler and compasses. 

Let us give a numerical illustration. The irreducible equation 
16s4 + 72s3 + 96s2 + 60s+ 15 = 0 is found to have roots of the form 
a+peid, where a = —1/2, p = 1/2. The equation has two real roots, 
( _ ( 2 i ) i / 2 _ 9 ± [30 + 10(21)1/2]1/2)/8, and on the circle - 1 / 2 
+ eid/2, two complex roots, {(21)1/2 —9± [30-10(21)1 /2]1 /2}/8. 

Necessary and sufficient conditions for an irreducible equa­
tion to have complex roots of the form a+peid, where a and p 
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are both rational, are obtained by extending our theorem on 
necessary and sufficient conditions that an equation have roots 
of the form eid. 

THEOREM 9. An irreducible equation fn(z) =0 has among its 
complex roots some roots of the form a+peid, where a and p are 
rational, when and only when both of the following conditions are 
satisfied. 

1. The system of equations 

pna0 = f (a), pn-2(na0a + ax) = ƒ (a) 

has a rational solution (ce, p). 
2. Letting z=a+pz and forming the expressions 

g(zi) = f (OÙ + pzi), 

4>2n{Zl) = (Zx2 + Dng(- ^g(~~) = *»W) = iW, 
\Zl ~ l) \Z! + 1/ 

we see that the equation x[/n(u) = 0 must admit at least one positive 
root. 

As applications, we shall mention the following cases. 
(1) Klein's famous Modul-figur, consists, in the plane of com­

plex numbers, of the set of circles of radius 1/2 with centers on 
the axis of reals atO, ± 1 , ± 2 , • • • , and the system of straight 
lines parallel to the axes of imaginaries which are tangent to 
these circles and the system obtained by continued reflection 
of this figure with respect to itself by reciprocal radii. We may 
state the following property. An irreducible equation cannot have 
roots on more than one circle of the Klein Modul-figur. 

(2) Every irreducible equation of degree < 10 with a root on any 
circle S is completely solvable by radicals.* 

(3) When an irreducible equation a0z
n+aizri~l+ • • • +an = 0 

has a complex root of the form a-\-peiB, where a and p are rational, 
the equation aoyn = aoxn+aiXn~l+ • • • +an has a rational solu­
tion (x, y). 

When a and p are both integers, the diophantine equation 
aoyn = aoXn+ • • • +an has an integral solution (#, y). 

If the equation a0z
n+aizn~1+ • • • +an = 0 has a complex root 

* This can probably be extended to give a result corresponding to the last 
theorem of §2. 
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on a circle of rational radius touching the axis of imaginaries at the 
origin, the equation aiXn~~l+a2Xn~2 + • • • +an = 0 has a rational 
root. The equation 16z*+72zz+96z2+60z+15 = 0, which was 
mentioned above, comes under this heading. The equation 
72x3+96x2 + 60x + 15=0 has a root - 1 / 2 . 

In connection with this work I may mention a paper by D. H. 
Lehmer.* He defines a polynomial as quasi-cyclotomic if all zeros 
lie on a circle of radius r, with center at the origin, and if the 
arguments of the roots are commensurable with 27r. His work 
is connected with our own by his Theorem 3, which is as follows. 

Let the roots of f=0 lie on the circle of radius r. Then r is an 
integer or the square root of an integerf according as n is odd or even. 

An interesting result is his Theorem 6, which reads: Let the 
n = 2k roots of f(x) = 0 be of the form (R)lf2-eVj where e„ are roots 
of unity, and where R has no square factor. Then 

(2*)! 
V ; - (k + l)l(k- 1)! 

4. On the Distribution of Complex Algebraic Integers of a Given 
Degree. The identification of the points of intersection of the set 
of circles 5 (or C) with the totality of complex quadratic irra­
tionalities (integral or otherwise) suggests the problem of in­
vestigating the distribution in the plane of complex numbers of 
the totality of algebraic integers x+iy of a given degree n = 2, or 
n = 3, and so on. 

The problem appears artificial on account of the fact that the 
totalities considered do not form domains of rationality. Yet, 
it seems to possess a degree of interest. For n = 2, the solution is 
given practically by inspection. In the (x+iy) plane, these 
algebraic integers are obviously distributed along the lines 
x = k/2, (k = 0, ± 1 , ± 2 , • • • ). The distribution is the same 
for all lines x = 0, ± 1 , ± 2 , • • • , and is also the same for all 
lines x= ± 1 / 2 , ± 3 / 2 , • • • , but it differs in the two sets. The 
density increases with increasing \y\, and so on. In addition, 
the integral real quadratic irrationalities are of course distrib­
uted everywhere densely on the axis of reals. 

For the set of all cubic algebraic integers (and eo ipso those 

* Quasi-cyclotomic polynomials, American Mathematical Monthly, vol. 39 
(1932), pp. 383-389. 
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of higher order), the first suspicion is that they form in the plane 
of complex numbers an everywhere dense set. Even if this 
should be so, there is some indication that an examination of 
the fine structure of the distribution with respect to "gleich-
mâssige Dichtigkeit" may be of interest. 

5. On the Use of the Arguments of the Coefficients f or Separating 
Complex Roots. In a previous paper,* I emphasized the possi­
bility of using systematically the arguments of the coefficients 
of an algebraic equation for the separation of the complex roots. 
Descartes' rule for an upper bound of positive (negative) roots 
is the first, very special, case of theorems of this kind. I used a 
very obvious, yet rather powerful, tool. Consider the equation 

ƒ(«) = anzn + • • • + a0 = 0, 
aM = rMe*M, 0 ^ 0M < 2TT, r„ > 0; z = pe{*, 0 ^ <j> < 2TT, p > 0. 

In the plane of complex numbers, mark from the origin the 
half-rays or vectors ÖM. The vector 0O is to remain in its original 
position. The vector 0i is to rotate in a positive sense with a 
constant angular velocity co, while for ju = 1, 2, • • • , n> the vec­
tor 0M rotates with a uniform angular velocity /x times that of 0i. 
Vectors 0M for which rM = 0, tha t is, for which the coefficient 
du = 0, are to be ignored. At any moment the vectors give the di­
rections of the vectors representing the terms aMzM = rM pv(0M+H>). 
These directions depend only on <j> and the 0M of the coefficients. 
Most of the theorems are immediate consequences of the fact 
tha t the sum of vectors from a common point can certainly not 
vanish when it is possible to draw a line through the point such 
tha t all vectors lie on one side of the line. This fact is used, for 
example, in the simplest proof of the Gauss-Lucas theorem that 
all roots oif'(z) = 0 lie inside or on the boundary of the smallest 
convex polygon around the points representing the roots of 

I t is, therefore, impossible to have roots of f(z)=0 in any 
sector (vertex at the origin) a<<j><{5 for which all vectors lie 
on one side of a straight line through the origin. Such 0-inter-
vals—if they exist—are determined by simple inequalities, 

* Kempner, Über die Separation komplexer Wurzeln, Hubert Festschrift, 
1922, pp. 49-59 ( = Mathematische Annalen, vol. 85 (1922), pp. 49-59). 
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which in many cases enable us to determine sectors, depending 
only on the arguments of the coefficients, not on the absolute 
values, and which are free of roots. 

The efficiency of the method is a function of the number of 
coefficients different from 0, rather than of the degree of the 
equation. For trinomial equations, a complete separation of the 
roots is given ; for quadrinomial equations, and m-nomial equa­
tions, w > 4 , valuable information usually is obtained, even 
though complete separation may not be accomplished. 

The results are indicated by the following illustrations. 
(1) Binomial equations: anz

n — ao = Q. We obtain n null sec­
tors (half-rays), each of which contains exactly one root, in 
agreement with elementary algebra. 

(2) Cubic equations: zz+az + b = 0, where a and b are real. The 
three roots have arguments 0i, 02, 03 (0 = 0, real positive roots; 
</>=7r, real negative roots); 

a > 0, b > 0: 0 i = 7T, 

a > 0, b < 0: 0i = 0, 

a < 0, b > 0: 0X = TT, 

a < 0, b < 0: 0i = 0, 

(3) Trinomial equations : 
am=rmeidm

} ao = r0e
ido. For such equations, we obtain com­

plete separation of roots, one in each of n sectors.* Special 
precautions are required for dealing with the cases in which 
two sectors adjoin and the roots lie on the common boundary 
line. As an illustration, consider equations of the form 

a$> + a2z
2 + a0 = 0, 05 = 0, 02 = 2TT/5, 0O = 5TT/6. 

Each of the following five sectors contains exactly one root: 
66°<0 i<84° , 129°<02<138°, 2O4°<03<21O°, 282°<04<3O9°, 

* Partly overlapping results by Nekrassoff, Mathematische Annalen, vol. 
29 (1887), pp. 413-440, who has different aims and uses entirely different meth­
ods. 

7T T 

— < 02 < —. 
3 2 
T 2ir 
— < 02 < — 
2 3 

0 ^ 02 < — ; 
0 

2T 
— < <t>2 ^ T , 

r. anz
n+amzm 

3TT 5T 

, j<*.<r. 
4 T 37T 

• T < * » < 7 ; 

5x 
, — < H i 2ir; 

4x 
TT ^ 03 < 

3 
+ a 0 = 0, an = rne

ie"f 
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324°<05<354°. The openings of the sectors are, respectively, 
18°, 9°, 6°, 27°, 30°. This result holds, of course, independently 
of the absolute values of the coefficients. 

(4) Quadrinomial equations. As an illustration, consider any 
equation of the form 

aioz10 + a9z* + abz* + a0 = 0, (a0f a~0, a9, aio > 0). 

Roots are separated into ten sectors: 18°<</>i<36°, 36°<<£2 

<60° , 9O°<03<1O8°, 108°<</>4<140°, 162°<</>5^ 180, 180° 
^06 < 198°, • • • , 324°<</>io<342°. The largest opening is 32°, 
the smallest 18°. Complete separation is partly due to the high 
degree of the equation, despite the small number of terms. For 
quadrinomial equations, complete separation is no longer guar­
anteed. 

(5) Mechanical Determination of Sectors. An instrument of the 
type of a "planetarium" which permits n vectors to rotate from 
arbitrary initial positions with angular velocities which are to 
each other in the ratios n\n — 1 : • • • :3 :2 :1 would permit the 
mechanical determination of sectors free from roots. An ordi­
nary watch will separate all roots of any equation of the form 

z12 ± az* ± b = 0, (a > 0, b > 0, X = 1 or 11). 

Consider, for example, any equation of the form z12+aiz+a0 = 0, 
(a0, ax>0). We obtain 

1 5 o < 0 ! < 16—°, 4 5 ° < 0 2 < 4 9 j j ° , 75°<03< 8 1 ^ ° , 

lO5°<0 4 <114~-° , 135°<</>4<147^j-°, 165°<06^18O°, 

with a similar distribution of 6 sectors from 180°-360°. The 
openings of the sectors are, respectively, 

4 0 1 0 Q O / C 0 3 0 4 0 
± 4_L 6_L 9± 1 2 — 15° 15° . . . 1 — 
11 ' 4 1 1 ' °11 ' *11 ' 1 Z 11 ' ^ ' ^ ' ' X l l * 

N. Obreschkoff* has given another extension of Descartes' 
rule. His result is as follows. 

* Sur un problème de Laguerre, Comptes Rendus, vol. 177 (1923), pp. 102-
104. 
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Let f(z) =ao+aiz+ • • • +anz
n = Q be an equation with real co­

efficients. The number va of variations in the sequence of its coeffi­
cients is not only an upper bound for the number N of its positive 
rootsj but also an upper bound for the number of roots lying in the 
sector I arg z\ <ir/n. If the number of roots lying in the sector is 
less than va, it is smaller by an even number. 

I. J. Schoenberg was kind enough to let me see the manu­
script of an article soon to be published in the Annals of Mathe­
matics. In the first part of this paper, the author introduces an 
ingenious extension of the notion of a sequence of variations 
in signs to the case of complex coefficients. This is accomplished 
by the so-called separating double-sectors for the coefficient av. 
To define these, we imagine in the plane of complex numbers 
the coefficients av marked by their corresponding points. 
Through the origin draw any two straight lines h and Z2 that 
divide the plane into four consecutive sectors Ai, A2, At, A^ 
with the following property: one of two pairs of opposite sec­
tors, for example, Ai and Az, shall not contain any of the points 
av in their interior. If the common opening of A\ and As is 
\f/, ( 0<^^7r ) ,we call ^4i and-4 3 together a. separating double-sector 
(of aperture yj/) for the coefficients av. In going in order through 
the sequence of points a0, #i, • • • , Qn, we count the number of 
times we have to pass from the sector A 2 to A 4 or vice-versa. 
This number is called va(S) and is equal to the number of varia­
tions of the sequence a0, • • • , an with respect to the separating 
double-sector S= (Ai, Az). I t is evident that for all av real, va{S) 
(taking \[/=w) agrees with the ordinary number of variations. 
Schoenberg then derives the following theorems. 

Letf(z)=ao+aiZ+ • • • +anz
n = 0, where av is real or complex. 

In the plane of complex numbers, mark the points av and draw a 
separating double-sector of aperture \p, (0 < ^ ^ x ) , as can always be 
done. Then the number of roots lying in the sector | arg z \ <\p/n is 
either equal to va(S), or is less by an even number. To find an 
upper bound for the number of roots of f{z) = 0 lying in a sector 
whose bisectrix makes with the positive axis the angle d, a substitu­
tion z = eidzf is carried out. 

For any sector with the vertex at the origin and of aperture 
2w/[n(n + l)] an upper bound of the number of roots lying in the 
sector can be established. 

The rest of this interesting paper deals with applications of 
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these ideas to equations of various types which fall outside the 
frame of this paper. 

6. Absolute Value, Argument, Real Part, Pure Imaginary 
Part of Complex Roots. 

Given 

f(z) = a0z
n + aizn~l + • • • + an = 0, 

where z=a+i(3 = rei<!> is a root. I t is well known that , if av are 
integers, then r, cos <j>, sin </>, a, and /3 all are algebraic numbers, 
and satisfy equations with integral coefficients which may be de­
rived from f(z) — 0 by rational operations. I t would be of some 
interest to have a systematic examination of these equations 
and their use for the determination of complex roots. At present 
the information is badly scattered in the literature.* 

Difficulties arise in all cases: (1) because the equation for 
any of r, cos <j>, sin </>, a, /3 is of high degree, usually n(n — l), 
with reductions in some cases for real rational av\ for example, 
for öo22+fli2+#2 = 0, z=a+i(3, $ ^ 0 , /3 satisfies a second degree 
equation, but a satisfies a linear equation, with integral coeffi­
cients; (2) because the equations necessarily have a large num­
ber of extraneous roots, which are sometimes not readily distin­
guishable from the roots required. Some aspects of a systematic 
examination and classification of methods of solution along 
these lines are contained in two master's theses, f 

I t is interesting to note that the equations for r and for ei<f> 

are related in structure (for av real). Let z = reid = rs be a complex 
root o f / ( s ) = 0 . 

Then r/s is also a root, and hence 

a0r
nsn + airn~lsn~l + • * • + an-xrs + an = 0, 

a0r
n + airn~ls + • • • + an-irsn~l + ans

n = 0. 

Eliminating, we have as equations for r and s, respectively, 

* References are too numerous to mention. We refer to just one interesting 
paper by Hayashi, Tôhoku Mathematical Journal, vol. 3 (1913), pp. 110-115, 
for the derivation of the equation for the absolute values. The degree of the 
resulting equation is incorrectly given [n, instead of n(n — 1)]. 

t R. C Huffer, University of Illinois, 1920, and A. W. Randall, University 
of Colorado, 1929. 



1935-1 COMPLEX ROOTS OF EQUATIONS 821 
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In connection with the problem of numerical solution of 
algebraic equations, I should like to mention a doctoral thesis* 
by A. J. Lewis on the solution of algebraic equations by infinite 
series, since it has not yet been published. As in practically all 
theoretical work on solutions by series, the background is given 
by Lagrange's expansion. The method was elaborated by 
Nekrassofï (1887), McClintock (1894), Lambert (1908), and 
others. However, the whole work is very fragmentary in char­
acter; and Lambert 's work, in particular, is open to criticism. 
Lewis has given a more detailed treatment of the expansions 
than was contained in the literature, has corrected Lambert 's er­
rors, and has made a step in advance in the investigation of the 
convergence conditions. Trinomial and quadrinomial equations 
are discussed in detail, and the treatment for equations with 
more than four terms is indicated. The formulas are very com­
plex, but this is due to the intrinsic difficulties of the problem. 

7. On a Graphical Method for the Separation and Computation 
of Complex Roots. The next article I shall take the liberty of 
reporting more in detail, since it is published in a journal not 
easily available to mathematicians, t In this paper, three meth­
ods of graphical representation are compared.Î 

(1) The representation familiar from conformai mapping, or 
from proofs of the Fundamental Theorem of Algebra: ƒ(z) 
=f(x+iy)=u(x,y)+iv(x,y). The intersections of the two 
curves u(x,y)=Q, v(x,y)=0 in the xy plane give the roots 
x+iy of ƒ (2) = 0. In order to find the number of roots of absolute 
value p, where p is arbitrarily assigned, it is only necessary to 

* A. J. Lewis, Thesis, University of Colorado, 1932. 
f Kempner, On the separation and computation of complex roots of algebraic 

equations, The University of Colorado Studies, vol. 16 (1928), pp. 75-87. 
% For the careful computation of all graphs of this paper, I am under great 

obligation to my colleague Professor C. A. Hutchinson. 
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find the number of points of intersection of the u curve and the 
v curve inside a circle about the origin of radius p. 

I t is possible, by means of Kronecker's characteristics, or by 
equivalent methods, to determine from the figure the number of 
roots of ƒ (JS) = 0 inside any closed contour by considering nothing 
but the points on the contour where the curves u = 0 and v = 0 
enter and leave the region. We shall use this idea later. 

(2) Let 
ƒ(*) = CnZ

n + Cn-lS"-1 H + Co = 0 , 

where Ck = ak+ibk = rk (cos jk+i sin yk) =rkeiyk, and z = x+iy 
=p (cos 0 + i s i n 0 ) =pei(l). 

We plot 
n n 

u = X rkp
kcos (k<j> + yh), v = J2 f*P*sin (** + 7*) 

in the following manner. For p, the absolute value of z, we select 
an assigned value which is held fixed. Then u and v become func­
tions of <j> alone, say # = ^ i ( 0 ) , v=\{/2(</>). Thus « and A may be 
considered as coordinates of a curve given in parametric form, 
with cj> as the parameter. We plot the curve in a uv system of 
coordinates, choosing the horizontal axis as the u axis and the 
vertical axis as the v axis. 

(3) We now plot the two curves u =)pi(<t>), v =^2(0) separately, 
but both in the same system of coordinates. For both curves, 
we take the horizontal axis as the <j> axis, the vertical axis as the 
u axis for the first curve, and as v axis for the second curve. 

Discussion of (2). To a circle in the complex z plane about the 
origin, of given radius p, corresponds in the uv plane, which we 
may also interpret as the (u+iv) plane, a certain closed curve. If 
N is the number of roots of \p(z) = 0 in the circle, and if we assume 
that no roots lie on the circumference, each root being counted 
with its proper multiplicity, then 2wN represents, as is known 
from the theory of analytic functions of a complex variable, the 
change of amplitude when the curve is once completely traced 
in the (u+iv) plane. 

Simple considerations of a type familiar from the theory of 
characteristics will permit us to read off this number N from our 
representation (2). To find the number of roots in a circle of 
radius p about the origin in the z plane, we consider the cor­
responding closed curve (2). Trace the curve (in either the posi-
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tive or negative sense), starting from an arbitrarily chosen point, 
and mark as points /3 all points where the curve crosses the u 
axis (v = 0), and as points a all points where it crosses the v 
axis (u = 0). Now we determine the change in the argument be­
tween two consecutive points of intersection with the u axis, 
as we move along the curve. We call this argument ty, since it is 
not necessarily the same as the parameter </>, the argument of 
the construction (3). The simplest case occurs when our points 
a and /5 form an alternating sequence, af3af5 • • • afi. To a 
change from any a to the next a corresponds each time a change 
of 7T in \(/. All these changes are in the same sense; that is, ^ is 
either each time increased by T or each time decreased by w. 
Hence \[/ increases or decreases by mir, where m is the number of 
j3, and there are therefore m/2 roots in the interior of the circle 
of radius p about the origin in the (x+iy) plane. But the number 
m = 2N is correctly expressed by the following theorem for the 
special case €i = €2 = • • • = ev = l,v = m. 

THEOREM 10. Denote by ft, ft, • • • the points of intersection of 
curve (2) with the u axis, by ai, a2, • • • the points of intersection 
with the v axis, and consider the chain of the points a and /3 cycli-
cally closed. If then, starting from any a, the number of /3 points 
between two consecutive a points is, respectively, €1, €2, • • • , €&, 
then the number of roots % of f{z) = 0 for which \ z\ <p is given by 
the formula 

2N = ^ ( — l)(«i+D + («a+l) + -••+(«*+!) 

I omit the proof that this formula, derived for the special 
case of alternating a and /3, is true for any sequence of the 
a and j3. These considerations lead to the following rule. 

R U L E . Write down, in proper order, the numbers which repre­
sent the number of fi in the successive a-intervals. Under the first of 
these numbers write -f 1, if it is odd, or — 1 , if it is even. Write 
then under each odd number that one of the two numbers, +1 or 
— 1, which is already written under the last preceding number ; but 
under each even number write +1 when — 1 is written under the 
last preceding number, and write — 1 when + 1 was written under 
the preceding number. The sum of all of these numbers + 1 , — 1 is 
necessarily even, and the absolute value of the sum is IN. 
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Discussion of (3). From the constructions (2) and (3), we 
find the following relation between them. 

I t is clear that to every curve (3) will correspond uniquely a 
curve (2), since for every value of 0 both u and v are uniquely 
determined. On the other hand, from a curve (2) a curve (3) is 
not uniquely determined : according to the manner of parametric 
representation of u and v by means of 0, an infinite number of 
curves (3) may be obtained. All curves (3), however, which cor­
respond to the same curve (2), are related to one another in a 
simple fashion. 

The theorem is applied, without modification, to (3). In our 
curves (1), drawn for a given value p, and with a common 0 
axis, the intersections of the u curve with the 0 axis and the 
intersections of the v curve with the 0 axis correspond in a 
definite manner to the intersections of the uv curve in (2) with 
the u axis and the v axis. To make this clear, it is only necessary 
to consider carefully a special case. Consider the uv curve 
treated in Fig. 12.* To this figure corresponds (schematically) 
Fig. 23 as is immediately checked. In comparing these two 
figures we have only to keep in mind that every time the curve 
(2) crosses the u axis, we have v = 0, so that in (3) the v curve 
crosses the 0 axis, and that every time the curve (2) crosses the 
v axis, we have u = 0, so that in (3), the u curve crosses the 
0 axis, and finally, tha t the combined sequence of the points 
of intersection of the u curve and the v curve with the 0 axis 
follow in the same order as the a/3 sequence in (2). 

I t follows tha t we get exactly the same cqS sequence, whether 
we read it off from (2) or from the sequence obtained by marking 
in (3) as a all points of intersection of the u curve with the 0 
axis, and as j3 all points of intersection of the v curve with the 
0 axis. We have, therefore, the following theorem. 

THEOREM 11. Plot, as explained under (3), the curves 

n n 

u = X) rkpk cos (k<j> + 7k), v = X) *kph sin (*0 + yk), 

for a given p. Name the points of intersection of the u-curve with 
the 0 axisy cei, ce2, • • • , and name the points of intersection of the 
v curve with the 0 axis, /?i, /32, • • • . Consider the combined se-

* The index 2 in I2 indicates that the figure refers to construction (2), etc. 
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quence of the a and P points in their natural order of magnitude. 
Assume the sequence closed cyclically, and let €1, €2, • • • , e„, re­
spectively, be the number of P points between two consecutive a 
points; then the number N of roots of f(z) = 0 for which \z\ < p is 
given by the formula 

2N = Y ) ( — l)(n+D+(«2+D+- ••+(«*+!) 

This number may be evaluated by the rule stated under Theorem 10. 

EXAMPLE. The following example is only schematic, and 
shows how the rule and the theorem are applied to more com­
plicated cases. 

Figures 12 and 23 are corresponding figures. From either of 
them we read off the ap sequence, and apply the rule or the 
theorem. 

Pau p a a a P P a fi a fi a fi fi 

0 1 0 0 2 1 1 3 
€k~~ - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 

Using the rule, we find 2N = 2, N=l. 
Using the theorem, we find 

ek+l= 1 2 1 1 3 2 2 4 
2 ^ = ( - l ) i + ( - l ) 3 + ( - l ) 4 + ( - l > + ( ~ l ) 8 + ( - l ) ^ + ( - l ) i 2 

+ ( - l ) 1 « = 2, i V = l . 

If we had started with /3 intervals and had considered the num­
ber of a in each /3 interval, we should have found 

P a a fi a a a 

6jc= 2 3 

€ * + ! = 3 4 

P P 
0 

1 

a P 

1 

2 

a 

1 

2 

P a 

1 

2 

P 
0 

1 

P 
0 

1 

2iV r=(—l)«H-(—l)7H-(—l)8+(—l)10H-(—.l)«+(—!)"+(—1)" 

+ (~l)i6 = 2, N = 1. 

Application of Theorem 11. We make use of the theorem to 
isolate the complex roots of an equation in concentric rings 
(pi<p<p 2 ) around the origin as center. The procedure is as 
follows. For two given positive values of p, P2>Pi, we assume 
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F I G . 1, 

F I G . 23 
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that the curves u(</>) and v(</>) are drawn in our system (3). By 
Theorem 10 we read off the numbers iV(pi), iV(p2) of roots of 
absolute value smaller than pi and p2, respectively. Then Nfa) 
— N(pi) gives the exact number of roots in the ring-region 
P2>p>Pi- Here we assume, since this case is easily disposed of, 
that no root lies on the circumference of either of the circles 
Pi or p2. 

In case we have the same sequence of a and /3 for pi as we have 
for p2, there are obviously no roots in the ring-shaped region 
p i < \z\ < p 2 . 

Since there exist well known simple upper and lower bounds 
for the absolute value of the roots of a given equation, we may 
start out with two such values for p, and, by appropriate choice 
of new values of p, we can separate our roots according to their 
absolute value. 

I t is a simple matter to plot curves of the kind used here, 
particularly because we are really interested only in the se-

F I G . 3X 



828 A. J. KEMPNER [December, 

quence of the points of intersection of the u curve and the v 
curve with the <t> axis. The chief advantage of the present 
method may lie in the fact that instruments exist with which 
curves of type (3) can be drawn. Such an instrument is the 
Michelson-Stratton harmonic analyzer, for which an accuracy 
of about 1 per cent to 2 per cent is claimed. 

EXAMPLE. Consider the equation 

z2 + iz + 1 = 0, u = p2 cos 2</> — p sin </> + 1, v = p2 sin 2<j> + p cos </>. 

Figure 3i gives the classical construction, which may be used for 
the verification of our results. Figure 42 gives, for p = l / 2 , the 
parametric representation of u = u(<j>)1 v = v(4>) in a ^/-system of 
coordinates, while Fig. 53 gives u and v both as functions of 0. 
Figures 62 and 73 are the corresponding curves for p = 1 ; Figs. 
82 and 93 are the curves for p = 3/2 ; and finally Figs. 102 and 113 

are the curves for p = 2. 
For p = 1/2, from Fig. 53, we have 

P P 

€* = oo, IN = (- iy + (- 2)2 = o, N = o. 

This is obvious, since the u curve does not intersect the <j> axis 
at all. For p = 1, from 73, we find 

a 0 a p p & 

e*= 1 3 , 2N = ( - 1 ) 2 + ( - 1)4 = 2, N=l. 

For p = 3/2, from 93, we get 

a p a p p p, N = 1, as for P = 1. 

For p = 2, from 113, we obtain 

apaPaPap 

ek = 1 1 1 1 

27V = ( - l )2 + ( - l ) 4 + ( - l)6 + ( - l ) 8 = 4, N = 2. 

Therefore, the equation z2+iz +1 = 0 has one root in the ring-
region 1/2 <p < 1 and one in the region 3/2 <p < 2 . This agrees 
with Fig. 3i. The absolute values of the two roots are 51/2/2 
- 1 / 2 = 0 . 6 + and 51/2/2 + l /2 = 1.6 + , respectively. 

I t will be recognized immediately that the graphs shown in 
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F I G . 42 

F I G . 53 
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Figs. 53, 73, 93, H3 also give information concerning the argu­
ments of the complex roots. 

8. Separation of Roots in Sectors. Without insisting at the 
present time, I shall only indicate how these same ideas can be 
utilized to separate roots in sectors from the origin by inter­
changing the role of r and <f> in the former process. 

/ x\ 

r 
-11 0 

V 

F I G . 62 

Given the equation ƒ (3) = a0z
n + • • • +an = 0, where av is real 

or complex, and again z = pei<t>==p(cos (j>+i sin 0) . Now, for a 
given 0, we have u = u(p)1v=v(p). Plot^(p) andzj(p) in the same 
system of coordinates, with p as horizontal axis, and with u 
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and v as vertical axes. We know how to find upper and lower 
bounds pi and p% for the absolute value of the roots. The value of 
p (always >0) is to be restricted to the interval between these 
upper and lower bounds. If the sequence of a and /3 is the same 
in the interval (pi, P2) for 0 = 0 i and for 0 = 02, there are no roots 
of ƒ(z) = 0 in the sector 01^=0^02. If the sequence of a and j8 
is not the same for 0 = 0 i and 0=02 , there are roots in the 
sector and the exact number may be read off by the same kind 

FIG. 73 

of theorem or rule as tha t which was derived above. The details 
of this are reserved for another occasion. At present, we restrict 
ourselves to the verification that zz — 2z — 2=0 has a root in 
the sector 3TT/4 ^ 0 =TT, with 1 <p < 3 / 2 : 

zz - 2z - 2 = 0. 

u = p3 cos 30 — 2p cos 0 — 2, v = p3 sin 30 — 2p sin 0 . 

1 1 
0 = 3TT/4: M = — (2 ) 1 V + (2)i/2p - 2 , v = - ( 2 ) 1 / 2

P
3 - ( 2 ) 1 / 2 P ; 

0 = 7r: w = — p3 + 2p — 2, 0 = p3sin7T —2psin7r. 
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Since for <j)=w1 v reduces to 0 identically, we select <£=7r —e, 
where e denotes some small positive angle. Then, from the rela­
tion lim«.*o[(sin e)/€] = l, we find z/ = 3p3e — 2pe, approximately. 

For $ = 37T/4, our u curve, for K p < 3 / 2 , lies entirely above 
the p axis, and the v curve crosses the p axis once (no a, one /3). 

a2 

FIG. 82 

For cj)=T — €1 neither the u curve nor the v curve cut the p 
axis for 1 <p < 3 / 2 (no ay no /3). There must be roots of ƒ(z) = 0 
tha t lie in the sector 37r/4 S<t> =7r-

We do not have, as we did before, an instrument available for 
drawing the curves, but, on the other hand, they are of par-
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ticularly simple type, namely, polynomial curves. Besides we 
need, of course, not the curves themselves, but only their (ap­
proximate) intersections with the p axis. 

9. Polynomial Curves and Complex Roots. I shall discuss one 
last topic also with some degree of completeness, in order to 
piece together ideas which are scattered and more frequently im­
plied than explicitly announced in the literature. 

F I G . 93 

The importance of polynomial curves for the real roots of 
algebraic equations is fundamental and obvious. But the sys­
tematic use of graphs for the purpose of locating complex roots 
of equations of the form f(z) =a0z

n+ • • • + a n = 0, where av 

is assumed, for simplicity only, to be real, is not so widely 
known as it should be, except for small values of n, such as oc­
cur in the problem of the location of complex roots of quadratic 
or cubic equations with real coefficients. 

The character of the real graph of f(z) is of great influence in 
some of the graphical methods for complex roots. I have clas­
sified real polynomial curves of any given degree n according to 
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their geometric behavior, and have given existence proofs for 
the various types.* 

Of particular importance for our immediate purpose are cer­
tain considerations which permit us to represent in a natural 
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FIG. 102 

manner some parts of the complex graph, and which, although 
the germ of the method goes back at least to Poinsot and his 

* Kempner, On the shape of polynomial curves, I. Tôhoku Mathematical 
Journal, vol. 37 (1933), pp. 347-362; Part II is to appear in the same journal. 
Compare also American Mathematical Monthly, vol. 40 (1933), pp. 469-470. 
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cordes idéaux, are not given the place they deserve in modern 
presentations.* 

The simple idea consists in an at tempt to make the best of a 
bad situation. Since it is impossible to give in a three-dimen-

ul 
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FIG. 113 

sional space a simple satisfactory representation of a function 
w =f(z) of a complex variable, we try to save as much as we can. 
We may use our three dimensions as follows. Consider only real 
values of f(z), but permit z to assume all values, real and com­
plex, which make ƒ(z) real. 

Letting f(z) =f(x+iy) =u(x,y)+iv(x,y) =u+iv, we have, 

* Phillips and Beebe, Graphical Algebra, 2nd ed. (1887) (out of print), make 
much use of it in an elementary study of equations of the second, third, and 
fourth degrees with real coefficients, but with no attempt at a systematic treat­
ment. In particular, the curves u(x, y)—0, v(x, y) =0 in the xy plane are not 
considered. The space curves in our text are to be found in Phillips and Beebe, 
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for f(z) real, v(x,y)=0, f(z)=u(x,y). If we use a horizontal 
xy plane for z = x+iy, and a vertical axis for u(=f(z) real), 
we shall obtain a space curve in our (xyu) -system of coordinates. 
The projection of the space curve onto the xy plane consists 
exactly of the curve v(x, y) = 0, and the functional value is the 
corresponding value of u(x, y). 

It is evident at once that this representation is related to the 
theory of functions of a complex variable, since the space curve 
is also given as the curve of contact between the surface of ab­
solute values \f(z)\ and the surface of real values u(x, y) for 
u(x, y)>0, and as the curve of contact between the surfaces 
~~ \f(z) | a n d u(x, y) < 0 . Again, the space curves may be inter­
preted as the intersections of the surface u(x, y) with the cylin­
drical surface v(x, y) = 0. 

These space curves serve as a skeleton for the function. They 
are important for us, (a) because we can study their general 
character with great ease, (b) because by means of them we can 
always represent all roots of the equation. 

(1) For a real function f(z)=a0z
n+ • • • +an with maxima 

and minima of the first order (ƒ' = 0, / " F ^ O ) we obtain a space 
curve of the following type. First we have in the xu plane the 
ordinary real graph, but in addition we have attached to each 
extreme a handle, symmetric to the plane of the real graph 
and penetrating it under a right angle. These handles always 
extend to infinity and their projections in the xy plane are (as 
stated) branches of the curve v(x, y) = 0, the properties of which 
are well known, sometimes under the name of Lucas' stelloids. 
In certain cases such a handle lies entirely in a plane, which 
then is for reasons of symmetry parallel to the yu plane. This 
happens, for example, for the real quadratic function* az2 + bz 
+ c, in agreement with the fact that v(x, y) =0 now consists of 
a line parallel to the y axis, besides the x axis. Similarly, for real 
polynomial curves with a line of symmetry, which then neces­
sarily have a maximum or a minimum on this line, and which 
we assume to be an extreme of the first order, the handle at­
tached at that extreme lies entirely in the plane perpendicular 

* Leading to one of the classical constructions of complex roots of quadratic 
equations with real coefficients. 
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to the xu plane and contains the line of symmetry. For example,* 
consider the f unction ƒ (s) = s4 - 2s2 = (s - (2)1/2) (z + (2)1'2)*2. Here 
v(x, y) = 0 consists of the curves ;y = 0, x = 0, x2 — y2— 1 = 0 . The 
projection of the real part of the curve is y = 0 ; the line x = 0 con­
tains the handle attached at the maximum; the branches of 
the hyperbola are the projections of the two handles attached 
at the minima. These last two handles therefore do not lie in 
planes. The distance of their points from the xy plane increases 
monotonically as the projection moves along the hyperbola to 
infinity.! 

The same considerations may be applied to transcendental 
functions. For sin z, the result is particularly simple: v(x, y) = 0 
consists in the xy plane of the axis of reals (the x axis) and of the 
equidistant lines x= ±(2& + l)7r/2, (& = 0, 1, 2, • • • ). Hence, 
all handles lie in planes perpendicular to the xu plane and 
parallel to the y axis. The handles are nothing but catenaries, 
attached at the maxima and minima, and extending upward 
(downward) from a maximum (minimum). Our later remarks 
concerning the utilization of these extended graphs for the 
location of complex roots of an equation aoZn + • • • +an = 0 
are immediately applicable to the location of complex roots of 
sin z = c, (c real, | q >1 ) . Applied to any two real circles in a 
plane, the handles lead to a neat interpretation of the circular 
points. 

For any equation of the form aoZn + • • • +an = 0 with real 
coefficients and with the maximum number n — 1 of real ex­
tremes (for example, f(z) = (z—ai) • • • (z — cen)-r/3, a^a% 
T^ - - - 7^an real, /5 real), the structure of the real curve and 
all of its handles is of such simple character that it seems a 
pity not to make use of it for approximating the location of 
complex roots. With but little practice, it is a simple matter to 
estimate roughly the points where this space curve intersects any 
plane parallel to the xy plane. These points, read off in the jor m 
x+iy, give a first approximation to all roots off(z) +c = 0. 

* The qualitative—not quantitative—aspects of many theorems in an in­
teresting article by H. B. Mitchell, Transactions of this Society, vol. 19 (1918), 
pp. 43 ff., become intuitively evident by these geometric interpretations. 

t See Fig. 1 7 f o r s 4 - 2 s 2 + l . 
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I may mention that the Fundamental Theorem of Algebra 
can be given a very clear interpretation by means of such space 
curves, and that a proof of the theorem, essentially equivalent 
to the proof of the existence of n intersections of u(x, y) = 0 and 
v(x, y) = 0, can be constructed. 

(2) I t is now necessary to free ourselves from the restriction 
that a0z

n + • • • +an have the maximum number of real ex­
tremes. I can only indicate the state of affairs. 

To illustrate, we consider successively the functions* f(z) 
= zz — z, zz — ez, zz, zz+ez, zz+z, 0 < € < 1 . As e—»0, the two ex­
tremes of zz — z move together, coalescing for € = 0, and leading 
to a point of inflection with a horizontal tangent (f(z)=Q, 
f"(z) =0) . f As we pass from zz to zz+z, the point of inflection is 
still existent, but the roots of ƒ (z) = 0 have become imaginary. 
(For higher degree polynomials, the points of inflection gener­
ated by the coalescence of consecutive maxima and minima 
may be ultimately lost.) To trace this in detail requires distinc­
tion between natural points of inflection on polynomial curves, 
such as must exist between any two consecutive extremes, 
and accessory points of inflection, due to such coalescence of 
consecutive maxima and minima. At a natural point of inflec­
tion, \f{z) | is a maximum, at an accessory point, \f(z) | is a mini­
mum.) % Schematically, ^ , ^ (maximum), r*,\ (minimum). 

As e goes from 1 to 0 to — 1 , the handles first run together, 
and then completely separate from the real curve. The projec­
tions of our space curves onto the xy plane are given by the cor­
responding equations v(x, y) = 0. 

Even if the accessory points of inflection should become lost 
(compare, for example, the succession of curves: z* — 2z2+l, 
z*-ez2+l, s4 + l, z*+ez2 + l, z4 + 2z2 + l) these branches are 
still present in the space curve. They can in no way be destroyed 
provided a 0 ^ 0 , but can only be changed in shape and position 
and in the manner in which they are connected with each other, 
however the coefficients av may vary. 

* See Figs. 12-16 for € = 1, 0.1, 0, —0.1, —1, respectively. 
t Our space curve consists of three branches, making with each other angles 

of 7r/3 at their point of intersection, 2=0, as is known from the theory of con-
formal mapping. 

% Kempner, Tôhoku Mathematical Journal, loc. cit. {On the shape of poly­
nomial curves.) 
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F I G . 13 
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FIG. 14 

FIG. 15 
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F I G . 16 
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These hints are sufficient to characterize qualitatively the 
space curves for a0z

n+ • • • +anj for the case when the total 
number of maxima, minima, and accessory points of inflection 
(each accessory point given a weight 2) is the largest possible.* 
Algebraically, this total number is obtained by a careful exam­
ination of ƒ (2) and f'(z) for real z. 

FIG. 18 

(3) If our total number is less than n — 1 (taking multiplicities 
into account), as in s4 + 2 s 2 + l , (one minimum, no points of in­
flection, and hence in particular no accessory points of inflection, 
total number = 1 <3 ) , some of these free branches will in turn 
have coalesced. As an illustration of this state of affairs, we 
consider z*+2z2 + l. Since this function is obtained from z4 

— 2z2 + l by a substitution z — iz, our whole space curve is ob­
tained by rotating Fig. 17 through w/2 around the u axis, thus 

* For a polynomial of degree n, remembering that each accessory point 
corresponds to one maximum and one minimum, we have Ma-\-Mi+2A ^n — 1, 
where Ma == number of real maxima, Mi = number of real minima, A — number 
of accessory points. The sign of inequality holds when the curve does not pos­
sess the maximum number n — 1 of extremes and some of the accessory points 
of inflection have become lost. 



I935-] COMPLEX ROOTS OF EQUATIONS 843 

changing the hyperbola in the xy plane to one intersecting the 
y axis. 

If a continuous transformation of z4 — 2z2+l into £4-f 2z2-f 1 
is desired which shall illustrate in typical fashion how handles 
attached to the real curve zA — 2z2+l first detach themselves 
from the real curve and are afterwards recaptured by it, a 
suitably chosen variation of coefficients passing through s4 — zz 

is preferable to our chain z4+ez2
f 2 ̂ € ^ — 2. In the general case, 

the situation is governed by the curve v(x, y) = 0; any point in 
the xy plane where two branches of v(x, y) = 0 intersect (double 
points of v = 0) is the projection of a point on our space 
curve where two handles or detached branches are joined, and 
conversely. This agrees with the theory of conformai mapping 
and its breakdown at points for which f (z) = 0. At all such points 
on the space curve where handles or branches are joined (in­
cluding the real curve), they are of the character of intersections 
of a surface at a saddle point. If a point starts moving along 
any branch of the space curve at u = + <*>, it is always possible 
to travel along the space curve to u = — °o. (This is a conse­
quence of the last remark combined with the Fundamental 
Theorem.) 

I hope that enough has been said about these space curves to 
justify the importance I attach to them for the problem of com­
plex roots. A collection of strong wire models of such curves, and 
their introduction into advanced elementary work, is very de­
sirable. 

T H E UNIVERSITY OF COLORADO 


