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erally separable domains of diameter 1/n or less. By the above 
argument each Gn contains a countable subcollection Gn' cover­
ing space. Hence, space is completely separable and the theorem 
is established. 
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1. Introduction. An abstract Hubert space is a normed linear 
space, or vector space, of infinite dimensionality, with a norm 
based on a Hermitian inner product, defined for all pairs of ele­
ments in the space. The space is, moreover, separable and com­
plete according to this norm. The usual postulate system for 
Hubert space, which was first stated abstractly by J. von Neu­
mann, consists of five groups of postulates, or nineteen in all. f 

The purpose of the present paper is to demonstrate the re­
dundancy { of a number of the postulates, and to present a sys­
tem of eleven independent postulates for a normed linear space 
with a Hermitian inner product. The adjunction of three more 
postulates, each of which is independent of the first eleven and 
the remaining two, then gives us a system which is equivalent 
to that of von Neumann, that is, it defines an abstract Hubert 
space, and it is categorical. 

A special feature of this postulate system is that the abstract 
relation called equality, and denoted, as usual, by the symbol = , 
enters on an equal footing with the operations defined in the 
space. § Three of the eleven postulates are concerned with this 

* Presented to the Society, December 1, 1934. 
f J. von Neumann, Mathematische Grundlagen der Quantenmechanik, 1932. 

pp. 19-24; M. H. Stone, Linear Transformations in Hilhert Space, Colloquium 
Publications of this Society, vol. 15, pp. 2-4. 

% Some of these redundancies were noted simultaneously by a fellow-
student, Mr. Ivar Highberg, and myself. 

§ The postulational treatment of equality in vector spaces was suggested 
by A. D. Michal in a critique of postulate systems. See this Bulletin, vol. 39 
(1933), Abstract No. 339. 



440 A. E. TAYLOR [June, 

relation, giving its properties in connection with the operations. 
I t is then demonstrated that the equality relation has the usual 
properties of an equivalence relation: reflexiveness, symmetry, 
and transitivity. 

2. A Normed, Linear Space. Let K be a class of elements 
x, y, • • • ; and let C be the class of complex numbers a, b, c, • • •. 
Let there be given in K a binary relation, called equality, and 
denoted by = , such that given an ordered pair of elements x, y 
fromi£, then either x bears the relation to y (x = y), or it does not 
(x^y). Let + be the symbol of a binary operation, or rule of 
combination, defined throughout K. That is, to each ordered 
pair of elements x, y from K, there corresponds a unique entity, 
called their sum, and denoted by x+y. Let • be the symbol of a 
binary operation defined on the composite of C and K; that 
is, given aeC and xeK, there is uniquely determined an entity, 
denoted by a-x, or simply ax. Let ( , ) be the symbol of a 
binary operation, called the inner product, defined for all ordered 
pairs x, yeK, and yielding a unique entity, written (x, y). 

The universe of discourse composed of the class K, the rela­
tion = , and the three operations + , • , ( , ), is to be gov­
erned by the following eleven postulates, and it then forms a 
special kind of normed, linear space, as will be proved in §3. 

1.0 The class K contains at least one element. 
1.1 If x, y e K, then x+y e K. 
1.2 If a e C and x e K, then a-x e K. 
1.3 If x, y, ( — 1) -y, x+( — 1) -y e K, and if for each element 

u e K, [x+( — l)y]+u = u, then x = y. 
1.4 If x, y e K, then (x, 3/) e C. 
1.5 If x, y, z, x+y e K, and (x+y, 3), (x, 2), (3/, z) e C, then 

(x+y, z) = (x, z) + (yy z). 
1.6 If x, y e K, and (x, y), (y, x) e C, then (x, y) = (3/, x). 
1.7 If x, y, axe K, and (ax,y), (x,y) e C, then (ax, y) =a(x,y). 
1.8 If x e K and (x, x) e R, then (x, x) ^ 0, (R denotes the class 

of real numbers). 
1.9 If x e K and (x, x) = 0 , then x+y —y for each y in K. 

1.10 If x, y e K, and x = y, and if u is an arbitrary element in 
K such that (x, u), (y, u) e C, then (x, u) = (3̂ , u). 

This statement of the postulates is such as to make each one 
intelligible independently of the others. Thus, if 1.1, 1.2, and 
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1.4 hold, the remaining postulates may be greatly abbreviated. 
We also remark a double use of the symbols = , + , - . No con­
fusion will arise; the context suffices to make the meaning clear. 

3. General Theorems. This section will be devoted to proving 
that the universe of discourse defined in §2 is a normed, linear 
space.* Questions of consistency and independence are dis­
cussed in §4. 

DEFINITION. If x e K, then ( — l)x e K, by 1.2, and we call 
this latter element —x ( * -x=( — l)x). Similarly we define 
x — y==x + ( — l)y. 

The following theorems are stated without proof, f 

THEOREM 1. If x, y e K, and a e C, then (x, ay) = â(x, y). 

THEOREM 2. If x, y, z e K, then (x, y+z) = (x, y) + (x, z). 

THEOREM 3. If x, y, u, v e K, and a, b, c, d e C, then 
(ax + by, cu + dv) = ac(x, u) + bc(y, u) + ad(x, v) + bd(y9 v). 

DEFINITION. An element z e K such that z+y =y for each 
y e K, is called a zero element. 

THEOREM 4. There exists at least one zero element in K. If x is 
any element in K, then Ox is a zero element, and x — x is also* 

PROOF. By 1.0, there exists at least one element x e K. There­
fore Ox e Ky by 1.2. By 1.9, any element y such that (3/, y) = 0 
is a zero element. But if x is arbitrary, (()•#, 0 # ) = 0 , by 1.7. 
Also (x — x, x — x)=0, by Theorem 3. We shall presently prove 
that all zero elements are equal. 

THEOREM 5. If x, y e Kf then x+y=y+x (Commutativity). 
If x, y, z e K, then x+(y+z) = (x+y)+z (Associativity). 

We shall prove the commutativity; the proof of associativity 
is quite similar, and will be left to the reader. We need merely 
show that (x+y) — (y+x) is a zero element; the result then 
follows by postulate 1.3. Consider the inner product 

((x + y) — (y + x), (x + y) - (y + x)). 

* S. Banach, Théorie des Operations Linéaires, 1932, pp. 26-37 and p. 53. 
Banach calls them "espaces vectoriels normes." 

t M. H. Stone, loc. cit., p. 4. 
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It is easily seen, on expanding this with the aid of Theorem 3, 
that the inner product is zero, and that therefore, by 1.9, 
(x+y) — (y+x) is a zero element. 

The next group of theorems establishes the familiar proper­
ties of the equality relation. 

THEOREM 6. If x, y e K, and x = y, then (x, x) = (x, y) = (y, x) 
= (y, y)-

The proof is accomplished by replacing the arbitrary element 
u of postulate 1.10, first by x, and then by y. We thus obtain 
(x, x) = (y, x), and (x, y) — (y, y). But since (x, x) is real, it 
follows by 1.6 that (3/, x) = (x, y). Thus the theorem is proved. 

THEOREM 7. If x, y, u, v e K, and if x — y and u = v, then 
x-\-u=y+v. 

PROOF. Consider the inner product 

(O + u) - (y + v), (x + u) - (y + v)). 

We find, upon expansion of this according to Theorem 3, that 
postulate 1.10 and Theorem 6 reduce the resulting expression 
to zero. Consequently the element (x + u) — (y+v) is a zero 
element, and x+u = y+v. In quite similar fashion the following 
theorem is proved. 

THEOREM 8. If a, b e C, and x, y e K, and if a = b and x = y, 

then ax = by. 

THEOREM 9. The relation = is an equivalence relation. That is, 
if x e K, then x = x (reflexiveness). If x, y e K, and x = y, then 
y = x (symmetry). If x, y, z e K, and x = y and y — z, then x = z 
(transitivity). 

PROOF. We have already seen that x —x is a zero element 
(Theorem 4). It follows at once that x = x. To prove the sym­
metry we consider the element y — x and the inner product 
(y — x, y — x). On expanding, we find the relation: 

(3/ - x, y - x) = (y, y) - (y, x) - (x, y) + (x, x). 

The expression on the right vanishes, by Theorem 6. Hence, by 
postulates 1.9 and 1.3, y = x. Finally, let x = y and y — z. Then 

(x — Zj x — z) = (x, x) — (z, x) — (x, z) + (z, z). 
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From Theorem $ and postulate 1.6 we have the relations: 

O, x) = (y, y) = 0 , z), 0 , z) = 0 , ;y) = (y, z), 

0, x) = (2, y) = (;y, 2), O, z) = (2, x) = (z, y). 

From these it follows that (x — z, x — z)=0, so that x — z. 
Postulates 1.0, 1.1 and Theorems 4, 5, 7, 9 suffice to show 

that the elements of K form an abelian group with respect to 
addition, using the equality relation.* The consequences of this 
are summed up in the following theorem. 

THEOREM 10. The class K forms an abelian group with respect 
to addition. 

The equation x+y = z is uniquely (to within equal elements) 
solvable for x, and indeed x = z — y. In particular, the zero 
element in K is unique (that is, all zero elements are equal) ; 
and to each x e K corresponds a unique inverse, — x. 

We shall denote the zero element in K by 0. This will occasion 
no ambiguity. The next group of theorems deals with the proper­
ties of multiplication by complex numbers. 

THEOREM 11. If x e K, then l x = x. If a e C, and 0 is the 
zero element in K, then a 0 = 0. 

PROOF. Consider the element 1 x —x; on expanding the inner 
product we find that ( l x —x, l x — x ) = 0 . Therefore l x = x. 
Since 0 is the unique zero element, it may be written in the 
form Ox , where x is arbitrary. It follows that (0, 0 ) = 0 . But 
(a-0, a-0) = | a | 2 (0 , 0 ) = 0 . Hence a-0 = 0. 

THEOREM 12. If x, y e K and a, b e C, then a(x+y) —ax+ay, 
(a+b)x = ax + bx} a(bx) = (ab)x. 

PROOF. Each of the equalities is established by the method 
used in the proof of Theorem 5. For instance, by considering 
the element a(bx) — (ab)x, we show that its inner product with 
itself is zero, and hence that a(bx) — (ab)x = 0. 

This completes the demonstration that K is a linear space. 
In fact, the system of postulates 1.0 — 1.10 is equivalent to the 
first two groups of postulates stated by von Neumann.f 

* B. L. Van der Waerden, Moderne Algebra, 1930, vol. 1, p. 15. 
f J. von Neumann, loc. cit., p. 19-21 ; von Neumann does not explicitly state 

any postulates for equality, but he uses all the properties which we have as­
sumed or proved. 
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DEFINITION. By the norm of an element x we mean the non-
negative number (x, x)1 /2; for convenience we shall write 
||*|| s (*, %yi\ 

I t is readily demonstrated that this norm has the usual prop­
erties. The proof is based on the Schwarz inequality; we sum­
marize the results in the following theorem.* 

THEOREM 13. If x, y € K, and a e C, then 

|(*,y)|£MHMI, ||*|| èo, ||o|| = o, 
II* + yll £ Ml + IMI, IMI= I «I -11*11. 

4. Consistency and Independence of the Postulates. Postulates 
1.0 — 1.10 are satisfied in any abstract Hubert space, and are 
therefore consistent. As a specific example consider the class 
Ho of infinite one-rowed matrices of complex numbers 
x=(x i , #2, • • • ) such that the series X)jLi|#t-|

 2 *s convergent. 
If y= (yu y*i • * * ) '1S a n element of Ho, we define x = y if and 
only if Xi = yi, (i = l, 2, 3, • • • ) ; and define 

x + y = (x! + yh x2 + 3>2, • • • ), 
oo 

a-x = (axiy ax2, • • • ), (x, y) = ^xrfi. 

This system forms a Hubert space, f For the sake of uniformity, 
most of the independence examples have been formed from 
variations of this example. We present these examples below, 
with a brief explanation of each one ; the details of verifying the 
postulates in each case are rather simple, and are, for the most 
part, left to the reader. The number of the example denotes the 
postulate which is not satisfied, thereby being proved independ­
ent. 

EXAMPLE 1.0. Let K be any empty class. Then postulates 
1.1 — 1.10 are satisfied vacuously. 

EXAMPLE 1.1. Let M be a positive real number, and consider 
the class of all infinite one-rowed matrices of complex numbers 
x= (xi, X2, - - - ) in which at most M elements of the matrix are 
distinct from zero. This is a sub-class of the class Ho, and the 

* J. von Neumann, loc. cit., pp. 21-22; M. H. Stone, loc. cit. pp. 4-5 . 
f M. H. Stone, loc. cit., pp. 14-15. 



*93S-1 POSTULATES FOR HILBERT SPACE 445 

relation and operations are defined as in H0. All the postulates 
are satisfied save that of closure under addition. 

EXAMPLE 1.2. Consider the sub-class of H0 in which all the 
elements of the matrices are real numbers, and let the relation 
and operations be defined as in H0. All the postulates are satis­
fied save that of closure under multiplication by complex 
numbers. 

EXAMPLE 1.3. Consider the class of complex-valued functions 
of the form 

F + sin nx, (— oo < % < oo ), 

where F is a complex number, and n is a non-negative integer. 
Then, i f / = . F + s i n nx, and g = G+sin mx, we define 

ƒ = gj if and only if F = G and n = m, 

ƒ + g = F + G + sin mx} 

af = aF + sin nx, 

(f,g) =FG. 

Each element in the class is determined by a complex number 
and a non-negative integer; the representation is unique. Postu­
lates 1.0, 1.1, and 1.2 are clearly satisfied. Postulate 1.3 is not 
satisfied, for let & = i7+s in px and suppose that [ƒ+( — l)g] 
+h = hîor every such h. This implies the relation F—G+H = H. 
We infer that F — G, but we can say nothing about n and m. 
Postulates 1.4-1.8 are satisfied, as are 1.9 and 1.10 also. 

EXAMPLE 1.4. Consider the class of infinite one-rowed mat­
rices of complex numbers x=(# i , #2, • • • )• No convergence 
condition is attached. Equality, addition, and multiplication 
are defined as usual. When x and y are elements of H0, the inner 
product is defined as the series 

00 

O, y) = Y,xiJi-

For such elements the inner product is a complex number. Be­
tween all other pairs of elements it is defined as the infinite one-
rowed matrix (#13*1, xtfi, • • • ). Thus the inner product is not 
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always a complex number. All the postulates save 1.4 are satis­
fied. 

EXAMPLE 1.5. Consider the class H0, with equality, addition, 
and multiplication defined as usual. Then, since the series 
X ^ i | xi\2 is convergent, 

lim | xn | = 0 , 
»—*00 

and for each matrix x there exists an integer i such that 
| Xi | = max {| Xi | , | tf21, • • • }. Then if k is such that | jk \ 
= max {\y\\, |3>2|, • • • }, we define (x, y)=Xi- yk. This system 
satisfies all the postulates save 1.5, as is readily verified. 

EXAMPLE 1.6. Consider the class H0, with equality, addition, 
and multiplication defined as usual, and define the inner product 

00 

O, y) = max | yi \ J^xkyk> 
* = 1, 2, • • • k==1 

Then clearly postulate 1.6, that of Hermitian symmetry, is not 
satisfied, whereas the other postulates are satisfied. 

EXAMPLE 1.7. Consider the class H0, with equality, addition, 
and the inner product defined as usual. For multiplication by 
complex numbers we define 

a-x = (R(a)xi, R(a)x2f • • • ), 

where R(a) is the real part of a. This system fails on postulate 
1.7. 

EXAMPLE 1.8. Consider the class H0, with the definitions as 
in the Hubert space of the consistency example, save for the 
inner product, which is the negative of the usual inner product: 
(x, y) = — ̂ T^iXiyi. This leads to a negative-definite quadratic 
form : 

(x, x) ^ 0, (x} x) = 0 if and only if #»• = 0, (i = 1, 2, • • • ) . 

Thus postulate 1.8 is independent. 

EXAMPLE 1.9. Consider the class H0f with equality, addition, 
and multiplication defined as usual, and the inner product de-
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fined to be zero for every pair of elements: (x, y) = 0 . This ob­
viously satisfies all the postulates but 1.9. 

EXAMPLE 1.10. Consider the class H0 , with addition, multi­
plication, and the inner product defined as usual. For equality 
we define x = y if and only if 

oo oo 

V M I2 V I I2 

Then postulates 1.0-1.9 are satisfied, but 1.10 is not, as the 
following example shows. Let x = ( l , 2, 0, 0, • • • ) and 
y = (2, 1, 0, 0, • • • ). Then x=y, for 

oo oo 

]C1 *i I = I L I y< I = 5 • 
*- l i= l 

But if u = (1, 0, 0, • • • ) (u is obviously in H0), we have (x, u) = 1, 
and (y, u) = 2 . 

These eleven examples prove the independence of the postu­
lates.* 

5. Abstract Hubert Space. In this paragraph we shall consider 
the universe of discourse composed of the class K, its relation 
and operations, subject to the postulates 1.0—1.10, and in ad­
dition, the following three. 

2.1. For each positive integer n, there exist elements xi, 
X2, • • • , xneK such that a\Xi+ • • • +awxw = 0 if and only if 
ai= • • • =an = 0. 

* The postulates may easily be modified to yield an independent set for a 
real space, that is, a space closed under multiplication by real numbers (the 
class R). Obvious alterations only are required in §§3-4, and in most of the in­
dependence examples. Examples 1.2 and 1.7, however, will not serve, and may 
be replaced by the following. 

EXAMPLE 1.2 (real). Consider the class of infinite one-rowed matrices 
x = (xi, X2, ' ' ' ), where ^i^iXi2 is convergent, and the x% are real, rational 
numbers. Multiplication by a real number a is defined by a- x = (aXi, ax^ • • • ), 
and the other definitions follow the usual model. 

EXAMPLE 1.7 (real). Consider the class of infinite one-rowed matrices of real 
numbers x—{x\, X2, • • • ) such that X^=i#*2 is convergent. Let multiplication 
by a real number a be defined by a-x—(N(a)xi, N(a)x2, • • • ), where N(a) is 
precisely a if « is an integer, and N(a) is the first integer smaller than a in all 
other cases. 
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2.2. K is separable according to the norm (x, #)1/2 = ||x||. 
2.3. K is complete* (according to the same norm). 

D E F I N I T I O N . ! When the system of K and its relation and 
operations satisfies postulates 1.0-1.10 and 2.1-2.3, it is called 
an abstract Hubert space, and denoted by / / . 

I t naturally occurs to one to inquire about the independence 
of the fourteen postulates, viewed as a single system. Before 
any steps can be taken in this direction, postulates 2.1-2.3 
must be restated so as to be intelligible in case some of the other 
postulates are not satisfied. While this is possible, it leads to 
many difficulties of expression. I believe that the present treat­
ment is more natural and convenient. 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

* J . von Neumann, loc. cit., p. 24. These postulates are identical with the 
last three of von Neumann. The latter has proved (p. 37) that each of these 
postulates is independent of the remainder of his set. 

f The reader may easily convince himself that this definition is justified, 
and that our postulate system is equivalent to that of von Neumann. This 
latter system is known to be categorical. That is, an isomorphism can be 
established between any two examples of abstract Hubert space. 


