A THEOREM ON ANALYTIC FUNCTIONS OF A REAL VARIABLE

BY R. P. BOAS, JR.

1. Introduction. Let f(x) be a function of class C^{∞} on $a \le x \le b$. At each point x of [a, b] we form the formal Taylor series of f(x),

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} (t-x)^{k}.$$

This series has a definite radius of convergence, $\rho(x)$, zero, finite, or infinite, given by $1/\rho(x) = \overline{\lim}_{k \to \infty} |f^{(k)}(x)/k!|^{1/k}$. The function f(x) is said to be analytic at the point x if the Taylor development of f(x) about x converges to f(t) over a neighborhood |x-t| < c, c > 0, of the point; f(x) is analytic in an interval if it is analytic at every point of the interval.

Pringsheim stated the following theorem.*

THEOREM A. If there exists a number $\delta > 0$ such that $\rho(x) \ge \delta$ for $a \le x \le b$, f(x) is analytic in [a, b].

However, Pringsheim's proof of the theorem is not rigorous. The purpose of this note is to establish this theorem, and, in connection with the proof, a companion theorem of considerable interest in itself.

THEOREM B. If $\rho(x) > 0$ for $a \le x \le b$ (that is, if the Taylor development of f(x) about each point converges in some neighborhood of the point), the points at which f(x) is not analytic form at most a nowhere dense closed set.

Theorem B is, in a certain sense, the best possible, since by a theorem of H. Whitney† there exist functions satisfying the

^{*} A. Pringsheim, Zur Theorie der Taylor'schen Reihe und der analytischen Funktionen mit beschränkten Existenzbereich, Mathematische Annalen, vol. 42 (1893), p. 180.

[†] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Transactions of this Society, vol. 36 (1934), pp. 63-89. I am indebted to Dr. Whitney for calling my attention to this paper.

conditions of Theorem B and having the points of an arbitrary nowhere dense closed set as singular points.

Theorem B can also be stated in the following equivalent form.

THEOREM B'. If f(x) is of class C^{∞} on [a, b] and analytic at no point of [a, b], there must exist an everywhere dense set of points, G, on [a, b] such that the Taylor development of f(x) about each point of G is divergent.

We shall need the following lemma.*

LEMMA. If H is a perfect point set on the interval $[\alpha, \beta]$, and if $H = \sum_{n=0}^{\infty} H_n$, where the H_n are enumerable in number, there exist a value n_0 of n and a sub-interval $[\alpha_0, \beta_0]$ such that H_{n_0} is dense in $H \cdot [\alpha_0, \beta_0]$.

2. Proof of Theorem B. For each x in [a, b],

$$\frac{1}{\rho(x)} = \overline{\lim}_{n \to \infty} \left| \frac{f^{(n)}(x)}{n!} \right|^{1/n} < \infty.$$

This implies that there exists a finite function $\mu(x)$ such that

$$\left| \frac{1}{n!} f^{(n)}(x) \right|^{1/n} \leq \mu(x), \qquad (n = 1, 2, \cdots),$$

or,

$$|f^{(n)}(x)| \leq n! [\mu(x)]^n, \qquad (n = 1, 2, \cdots).$$

Let E_k be the set (not necessarily non-empty) of points x such that

$$k \le \mu(x) < k + 1, \quad (k = 0, 1, 2, \cdots).$$

It is clear that $[a, b] = \sum_{k=0}^{\infty} E_k$. By the lemma, there is a sub-interval $[\alpha, \beta]$ and an integer k_0 such that E_{k_0} is dense in $[\alpha, \beta]$. For every point of $E_{k_0} \cdot [\alpha, \beta]$,

(1)
$$|f^{(n)}(x)| \leq n! [\mu(x)]^n < n! (k_0 + 1)^n, \quad (n = 1, 2, \cdots).$$

For every point of $[\alpha, \beta] \cdot C(E_{k_0})$, (1) holds by continuity. That

^{*} See Lebesgue, Leçons sur l'Intégration, 2d ed., 1928, p. 203. See also S. Banach, Théorie des Opérations Linéaires, 1932, p. 14 (Theorem 2).

- is, (1) holds uniformly in $[\alpha, \beta]$.* But this is a well known sufficient condition for f(x) to be analytic in $[\alpha, \beta]$. The same reasoning applies to any sub-interval of $[a, b] [\alpha, \beta]$; thus in any sub-interval there is a further sub-interval in which f(x) is analytic. The points at which f(x) is not analytic thus form a nowhere dense set, which is obviously closed.
- 3. Proof of Theorem A. Assume the theorem false; we shall obtain a contradiction. We have, then, a non-empty set H of points where f(x) is not analytic, and by Theorem B, H is closed and nowhere dense.

We first show that H is perfect. Suppose that H contained an isolated point X. The function f(x) is continuous with all derivatives at X; f(x) is analytic in each of the intervals X-h < x < X and X < x < X+h, for some h>0, and can be extended analytically across the point X in both directions. It follows immediately that f(x) is analytic at X, so that X is not a singular point. H being perfect, from now on we shall confine our attention to an interval $[a_1, b_1]$ such that $b_1-a_1 < \delta/4$ and $[a_1, b_1]$ contains a perfect subset E of H.

Since by hypothesis

$$\overline{\lim_{n\to\infty}} \left| \frac{f^{(n)}(x)}{n!} \right|^{1/n} = \frac{1}{\rho(x)} \le \frac{1}{\delta}$$

for every point of $[a_1, b_1]$, it follows that for each x in E there is an integer N_x such that

$$\left| \frac{1}{n!} f^{(n)}(x) \right|^{1/n} < \frac{2}{\delta}, \qquad (n \ge N_x);$$

hence

(2)
$$|f^{(n)}(x)| \leq n! \lambda^n, \qquad (\lambda = 2/\delta, \ n \geq N_x).$$

Let E_k be the set of points of E for which $N_x = k$. By the lemma, there exist a sub-interval $[\alpha, \beta]$ and a value k_0 of k such that E_{k_0} is dense in $E \cdot [\alpha, \beta]$. For x in $E_{k_0} \cdot [\alpha, \beta]$, (2) holds for $n \ge k_0$. For x in $(E - E_{k_0}) \cdot [\alpha, \beta]$, (2) holds for $n \ge k_0$, by continuity. Thus (2) holds uniformly for x in $E \cdot [\alpha, \beta]$, $n \ge k_0$.

^{*} This fact can be obtained as a special case of a general theorem in the theory of operations, which is established by similar reasoning; see S. Banach, op. cit., p. 19 (Theorem 11).

Let (x_0, y_0) be a complementary interval of the nowhere dense set $E \cdot [\alpha, \beta]$. Then the Taylor series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

converges to f(x) for $x_0 \le x < y_0$. This follows at once from the facts that $f^{(k)}(x)$ is continuous on $x_0 \le x < y_0$ for $k = 0, 1, 2, \cdots$, and that $y_0 - x_0 < \delta/4 < \delta$.

Define an auxiliary function $\phi(x) = (\beta_1 - \alpha)/(\beta_1 - x)$, where $\delta/4 > \beta_1 - \beta > \beta - \alpha > 0$. The function $\phi(x)$ is analytic on $[\alpha, \beta]$ and is represented over the whole of $[\alpha, \beta]$ by its Taylor development about any point of $[\alpha, \beta]$. We have

$$\phi^{(k)}(x) = \frac{(\beta_1 - \alpha) \cdot k!}{(\beta_1 - x)^{k+1}} \ge \frac{(\beta_1 - \alpha) \cdot k!}{(\beta_1 - \alpha)^{k+1}} \ge k! \lambda^k,$$
$$(k = 0, 1, 2, \dots; \alpha \le x \le \beta).$$

Now form $\psi(x) = \phi(x) - f(x)$. The function $\psi(x)$ is represented by its Taylor development about x_0 for $x_0 \le x < y_0$; for $n \ge k_0$, $\psi^{(n)}(x_0) \ge 0$ and $\psi^{(n)}(y_0) \ge 0$ by (2). Hence for $n \ge k_0$, $\psi^{(n)}(x) \ge 0$ for $x_0 \le x \le y_0$, since we may differentiate a power series termwise any number of times in the interior of its interval of convergence, so that $\psi^{(n)}(x)$ is represented over $x_0 \le x < y_0$ by a series of non-negative terms, for $n \ge k_0$. This reasoning applies to any complementary interval of $E \cdot [\alpha, \beta]$, with the same function $\psi(x)$. Hence $\psi^{(n)}(x) \ge 0$ for $\alpha \le x \le \beta$, $n \ge k_0$. By a well known theorem of S. Bernstein, $\psi^{(k_0)}(x)$ is analytic for $\alpha \le x \le \beta$, and consequently $\psi(x)$ is analytic in the same interval. But then $f(x) = \phi(x) - \psi(x)$ is analytic in $[\alpha, \beta]$, contrary to the hypothesis that H was not an empty set. Hence H is an empty set, and the theorem is proved.

HARVARD UNIVERSITY