
T H E GEOMETRY OF T H E W E D D L E MANIFOLD Wp* 

BY A. B. COBLE 

During the last few years our secretaries have been so active 
in organizing interesting programs at the regular meetings that 
surveys of progress in the more important fields of mathematics 
have been presented to the Society quite recently. At the meet­
ing last April in New York, reports on Algebraic Geometry 
were given. I have therefore felt impelled to change in some 
measure the traditional character of this biennial address, and 
to select a topic somewhat more special than usual. Lest this 
justification may seem too hollow, let me add that this change 
is in the direction of my personal interest in mathematics. For 
the benefit of those members present who are not specialists in 
geometry, I hope to illustrate by relatively simple early cases 
the general aspect of the problem, emphasizing those methods 
whose extension presents no difficulty. A technical account of 
the novelties presented will appear in the April number of the 
American Journal of Mathematics. 

The Weddle manifold Wv has the dimension p in the linear 
space S2p~iy the first case for p = 2 being the long known Weddle 
quartic surface in S*. Let us consider first its group-theoretic 
character. We all are familiar with the quadratic Cremona invo­
lution, 

lyz : %i%' = yiZi, (i = 0, 1, 2; x, x' in the same plane), 

which has jF-points at the vertices of the triangle of reference 
and which interchanges the points y and z. Its fundamental 
importance is due to the fact that the entire group of Cremona 
transformations in the plane is generated by the group of col­
lineations and by the single element Iyz above. For every larger 
limit for i, (i = 0, 1, 2, • • • , r), this involution Iyz persists; and 
it, together with the group of collineations, generates the regular 
Cremona group in Sr. When r ̂  3, this regular Cremona group is 
no longer the entire Cremona group of the space. The regular 

* An address delivered at Pittsburgh, December 28, 1934, as the retiring 
presidential address, before the American Mathematical Society. 
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Cremona transformations are characterized by the property 
that they are completely defined to within collineations at most 
by a finite number of F'-points, the existence of other FAoci, 
jP-curves, .F-surfaces, etc., being a necessary consequence of the 
existence of these F-points. 

Returning to 52 we take 2 + 3 points, pu p2, • • • , pz = P&2, 
and denote by In that involution Iyz which interchanges pi and 
p2 and which has .F-points at pz, p±, p&. Then the ten involutions 
I%h (̂ i i—1» ' ' * » 5; iféj), generate a finite abelian group of 
order 24 and type (1 ,1 ,1 ,1 ) whose elements multiply according 
to the following rules: 

J-ij = = A > J-ij-Lik == Ljk) J-ijLkl == J-klLij = = *-ikL jl = = -Lijkl' 

I t consists of the identity, the ten quadratic involutions, and 
five cubic involutions of type Iijki each with one double and 
five simple .F-points. Similarly in 58, with 3 + 3 points, 
pu ' ' ' i PQ = P<?, let 7i2 be that cubic involution Iyz which inter­
changes pi and p2 and which has jF-points at pz, • • • , p$. We 
again obtain a finite abelian group of order 25 with a multiplica­
tion table as above. Proceeding in this fashion we define in 
terms of r + 3 points in Sr an abelian group of order 2 r+2. 

There is however an interesting difference between the spaces 
of odd and of even dimension. When r is odd, say r = 2p—l, the 
number of points being 2^ + 2, the abelian group contains a 
symmetric element /12...2P+2 for which the .F-points all have the 
same character. These symmetric regular Cremona transforma­
tions are very scarce. In every Sn (r^2), there is the generating 
element Iyz. In every odd S^p-i there is the element J12...2P+2 
just mentioned. Apart from these fairly generic types there are 
only three further symmetric types in 52, one further type in 
53, and one in S4. We define the procession of Weddle manifolds 
WPf (p^2), to be the loci of fixed points of the involutions 
ii2...2p+2. Thus the first Weddle W2 in Sz is the locus of fixed 
points of that space involution whose pairs are the seventh and 
eighth base points of nets of quadrics contained in the web on 
P6

3, these two points coming together on the locus of nodes of 
quadrics on P6

3. 
Because of the abelian character of the finite Cremona 

G2
23>+1, Wp is invariant under the group, and on Wp each point 

is invariant under the identity and Ii ...2p+2. Thus G2
2p+1 effects 



WSJ THE WEDDLE MANIFOLD 211 

upon Wp the transformations of a g2
2p which is isomorphic with 

the additive group of half periods of the theta functions of genus 
p,so that some relation of Wpto these functions may be expected. 
Since also the set of points Plp+2» which defines /12...2P+2 and 
therefore Wp, is on a unique rational norm-curve N2p~l, and 
may be projectively determined on this curve by a binary 
(2p + 2)-ic, (co02p+2 = 0, it is clear that the theta functions in­
volved would necessarily be the hyper elliptic thetas. 

Let us turn then to the hyperelliptic curves for a second 
definition of Wp. The normal form commonly used for the dis­
cussion of the integrals on such a curve is 

Z2 = (û)f)2p+2 = ( t t l ) . . . (lt2p+2), 

the unique gi2 on the curve being given by z, —z. But another 
normal form has also been much used, namely, that for which 
the unique gi2 is cut out by a pencil of lines, that is 

HP
P+2 s fp(fu h) • yi + 2fp+l(th h)y, + fp+2(th t2) = 0, 

fP, fp+i, fp+2 being binary forms in h, /2, of the orders indicated. 
This curve of genus p and order p + 2 has a ^>-fold point at 
0(yQ:ti:t2 = 1:0:0). The branch lines of the gi2 are given by 

(co/)2^2 = fp\x - fpfp+2 =II(0<) = 0, 

and the 2p-\-2 branch points on the curve by 

yo'.h:t2 = — fp+i(ii):tnfp(ti):ti2fp(ti). 

The 3p+5 constants in the forms ƒ are reduced to p + 3 if the 
branch lines, (co/)2p+2 = 0, are given. Three more constants can 
be removed by a projectivity which leaves fixed the £-fold point 
O and the branch lines on it. Under these conditions Hp

p*2 has 
p absolute projective constants. The co^ curves obtained by 
variation of these absolute projective constants are all bira-
tionally equivalent. I t may be shown that every member of the 
aggregate (°op) may be obtained from a given one by a Cre­
mona transformation and that such member is uniquely deter­
mined when a given p-ad of points on the given curve is required 
to pass into the ^>-ad at 0. If the branch points of Hp

p+2 are 
fi> • • • , ?Vf2, then the set of 2p-\-3 points in S2 consisting of 
these 2p-\-2 branch points and 0 are associated with a set of 
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2p + 3 points in S23>-i of which 2^ + 2 are the set P%l+2 which de­
fines Wp and the last is a point x on Wp which runs over Wp as 
the p-ad on the given Hp

p+2 varies. 
I should like to comment briefly on this matter of the as­

sociation of two sets of n points. In one of the simplest problems 
of algebra, namely, the solution of a system of linear homogene­
ous equations in n variables, we naturally drop the dependent 
equations, and we seek the solutions of the system of r linearly 
independent remaining equations. These depend upon the 
matrix, Mr,n= (#;/), of coefficients of the system whose rank is 
r, say r < n to avoid trivialities. The solutions of this system are 
given in terms of n — r linearly independent solutions which 
may be arrayed in a matrix itfw_r,n = (bij). Obviously these two 
matrices are reciprocally related, the row product of any row 
of the one with any row of the other is zero. Thus the determina­
tion of the solutions (bij) of a system with coefficients (an) 
carries with it the determination of the solutions (a*-,-) of a sys­
tem with coefficients (bij). This interesting reciprocity between 
the two matrices, which I shall call apolar matrices, passes prac­
tically unnoticed in treatises on algebra despite its important 
applications in geometry. One of these applications, given by 
Grassmann in 1862, is to the determination of a linear space on 
the one hand by means of the points which it contains, and on 
the other by means of the linear spaces which contain it. An­
other application is found in the extensive theory of apolarity 
of linear systems of algebraic forms and of linear systems of 
algebraic loci. In analysis we find that the matrix Mn-i,m 
whose rows are Oth, 1st, • • • , (n — 2)th derivatives of the n 
solutions of a linear differential equation of the nth order, has, 
for its apolar matrix M\ ,n, n solutions of the adjoint equation. 

In the definition of apolar matrices the emphasis is on the 
rows. But, in a situation like this, a reflective geometer will not 
overlook the role played by the columns. The columns of Mr,n 

may be interpreted as n points in Sr_i, those of Mn-r,n as n 
points in Sn-r-\> These two sets of points, ordered with respect 
to each other, I have called associated sets of n points. Since in 
either matrix the rows can be replaced by independent linear 
combinations of all the rows, each of the two associated sets is 
determined by the other set only to within projectivities. The 
proportionality of complementary determinants of orders 
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r, n — r in two apolar matrices shows that, if one set of points 
satisfies some geometric condition, the associated set must also 
satisfy some geometric condition, though this second condition 
is usually of a totally different geometric character from the 
first. 

This association of two sets of n points has a deeper signifi­
cance than its projective definition would indicate. The associa­
tion is in fact invariant under properly applied regular Cremona 
transformation. If an involution Iyz with F-points at r of the 
first set transforms the remaining n — r points into new points, 
these r F-points and n — r new points form a new set of n points 
in Sr-i congruent to the original set. In the associated set in 
Sn-r-1 take the n — r complementary points as F-points of Iyz 

to form a similar congruent set. Then the two new sets, con­
gruent respectively to the original associated sets, are still as­
sociated. Thus, in the two associated sets previously mentioned, 
first of Plp+2 and x on Wp in 522>_i, and second of n , • • • , r2pi2 

and O in S2, the involution I\2 is associated with the perspective 
involution Ai2 with F-points at 0, Y\, r2 and with directions at 
ri, r2 corresponding respectively to points on the lines On, 0r2. 
To the involution /12.2P+2, of which x is a fixed point, there is 
associated the product A12 ^34 • • • A2p+it2pi2 = Ji2...2p+2, and 
this is the de Jonquiéres involution for which Hl+2 is a locus 
of fixed points and for which the set of points r^ 0 is congruent 
to itself. 

We use the association, proved in the above manner, to ob­
tain the coordinates of the point x on Wp. As a coordinate sys­
tem in S2p-i we take the 2p coefficients of a binary (2p — l)-ic, 
(a/)2w_1 , the perfect powers of linear forms then representing 
the points of a rational norm-curve iV2p_1, which for present 
purposes we identify with the N22*"1 on the 2p + 2 points 
Ptl+h Coordinate systems of this character date back to Weyr 
and his contemporaries. They are especially effective for all 
problems in which a rational norm-curve enters in a significant 
way, since then the highly developed algebra of binary forms in 
one or more sets of variables can be utilized. 

It is sufficient by way of illustration to take the case p = 2. 
The H2 =f2y<? + 2fzy0 + / 4 = 0 with double point 0 has for matrix 
of coordinates of its six branch points and of 0: 
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-Mh) 
hHh) 
Mh) 

-Mh) • • 

h f2(h) ' ' 

Mh) • • 

• -Mh) 

hftih) 
Mh) 

1 

0 

0 

/ here being non-homogeneous for convenience. The matrix of 
coordinates of the six points, P6

3, in 53 on the norm-curve iV3 

and of the point x on W2 is the matrix of coefficients of the 
seven binary cubics 

(*03, (tt2y, • • • , (#6)
3, (aty. 

We wish to determine (at)* and such constant factors for the 
perfect cubes that these two matrices may be apolar. Let the 
linear factors of fa(t) be 

Mt) = (fr iM/n). 

Then the linear identity connecting eight sixth powers reads : 

(thY , . . . , W , M* 
Mh)-<*'(h) Mh)-<*'(h) «(fi)-/»'(n) 

+ ™ -0, 

where / / (s) is the product of the differences of a particular root 
s of f 3 and of each of the other roots of ƒ,-. The polar of ƒ (t) as 
to this identity cancels the last two terms and removes the 
factor \/fz{ti) from the others yielding the identity connecting 
six fourth powers. This identity shows that the six perfect cubes 
of the second matrix must have factors l//2(/i), * * * , l / A W , 
respectively, in order that the second matrix may be apolar to 
the last two rows of the first matrix. That it may be apolar to 
the first row also requires that 

, A, Mh)-(thy fs(h)-(tky 
(aty = — • — — : — • h • * ' H — • — — • — • • 

/.(*i)-«'(/i) Mh)-»'{h) 

We have here then the coordinates of a point on the Weddle W% 
in S3 in terms of the roots h, • • • , h of (co/)6=/32 — fcfi. I t is 
not the best form of (a/)3, since there are many linear relations 
connecting six cubes, and since/3 and f2 satisfying 

z 
2 = ( c o*)6 = f 2 _ h U 
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cannot be chosen arbitrarily when (cot)* is given. But, for a root 
f% of ƒ2, z^—ftiri). If then we polarize the above identity as to 
fz(t), the first six terms yield (a/)3, whence 

As immediate generalizations we find that 

(A) (a/) 2 p - l 

ƒ„(<<) •«'(*<) 

(B) - (a*)2*-1 = E 
£-1 Zrj'fp (jj) 

Since the coefficients a in this last formula are symmetric in the 
p pairs of values r»-, zrv the coordinates # of a point on Wv are 
proportional to abelian functions of #1, • • • , up on Hp

p+2 de­
termined by the £-ad of points on Hp

p+2 : 

Pl> ^r1?' ^ 2 , %r2) ' ' ' ) ?p, %rp> 

The superposed p-ad for which all the z's change sign yields the 
same point (at)2p~\ whence the abelian functions are even. 

The last formula expresses the coordinates of a point x on 
Wp in terms of the coordinates of the p crossings of N2p~l and 
of the unique ^-secant 5p_i of N2p~l which passes through x. 
This Sp-i is determined by fp = 0. The Sp-i contains, however, 
a set of 2P~1 points x of Wp which arise from the variation of 
signs of zr.. We have then theorems of the following type : 

The Weddle quartic W£ in Sz contains Ns on P6
3, and a bi-

secant of Nz meets W24 in two further points harmonic to the two 
crossings of the bisecant. 

The Weddle Wz in 5B of order 19 contains iV5 on P8
5 as a triple 

curve. Of the 19 points in which it meets a trisecant plane of iV5, 
9 are found at the three triple points on iV6, and 6 at the contacts 
with Wz of the three bisecants at their crossings. The remaining 4 
are generic points of Wz whose diagonal triangle is the three cross­
ings of the trisecant plane. 

Naturally this last theorem is in much more precise form than 
can be verified here. 
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Each element of a finite Cremona group in S2 has a certain 
number of P-points and corresponding P-curves. The aggre­
gate of such P-points and P-curves for all elements of the group 
must divide into one or more sets such that in a set all the 
members are conjugate under the group. In space S3 we shall 
have P-points, P-curves, and P-surfaces similarly disposed 
under a finite group. We lump all of these under the generic 
term F-loci of the group. For regular groups in 53, however, the 
P-points and P-surfaces must lie in a different conjugate sys­
tem from the P-curves. Thus, for the G2.2

4 of the Weddle W2 

defined by P6
3 the directions at the point pu say 7Ti, pass by 

756 into 7Ti56, the plane on p2) pz, PA', and this plane passes by 
/34 into 7T123456, the quadric with node at p2 and on the other five 
points. These 6 points, 20 planes, and 6 nodal quadrics make up 
a conjugate set of 2-24 P-loci of the first kind conjugate under 
G2.24. Similarly the line pip2, say xi2

(2) =7r3456(2\ passes by Iï2 into 
7T(2)=7T 123456(2), the cubic curve N* on P6

3. Again these 15 lines 
and one cubic curve make up a conjugate set of 24 P-loci of the 
second kind conjugate under G2.2

4. These P-loci of the second 
kind are on W2 and each is invariant under Ii2...& which de­
fines W2. On the other hand the 2 • 24 loci of the first kind are 
paired by /12...6, ^1 with 7r23456 and 7ri23 with 7r456, and the inter­
section of each of the 24 pairs is a locus on W2. The product of 
the members of a pair is a quadric on P6

3. Quadrics on P6
3 map 

W2 into the Kummer quartic surface, the P-loci of the first kind 
of W2 contributing the 16 tropes of the Kummer surface, and 
the P-loci of the second kind contributing the 16 nodes of the 
Kummer surface. Each locus of one kind is on 2^ + 2 = 6 loci 
of the other kind. 

Similarly, Wz has three kinds of P-loci each forming a conju­
gate set of 2 • 26, except for 26 of the third kind which are on Wz-
Those of the first kind have dimension 0 or 4; of the second 
kind, dimension 1 or 3; of the third kind, dimension 2. The 
mapping system which converts Wz into the generalized hyper-
elliptic Kummer 3-way of Klein and Wirtinger is a system of 
cubic spreads with nodes at P8

5, the P-spaces of the first kind 
of dimension 0, and simple points on the P-spaces of the second 
kind of dimension 1. Thus it turns out that the hyperelliptic 
Kummer 3-way in S7 has, in addition to 64 singular points and 
64 singular SVs, also a set of 64 singular Sa's. 
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Generically, then, Wp has p kinds of pairs of P-loci with the 
following incidence relations: Each pair of P-loci of the j t h 
kind, ( i = l , • • • , p), contains 2p + 2 pairs of P-loci of the 
0 ' + l ) t h kind and is contained by 2^ + 2 pairs of P-loci of the 
(J— l ) th kind. Thus the hyperelliptic Kummer p-wa,y Kp has, 
in addition to the 22p singular points and 22p singular spaces 
given by the classic theta function theory, p—\ sets of 22p 

singular linear spaces of intermediate dimension with the inci­
dence relations just mentioned. 

The mapping system which converts Wp into Kpy a system 
of spreads of order p with (p— l)-fold points at P^+L has 
essential importance. If its dimension is less than 2P — 1, then 
Wp is mapped not into Kp but rather into some projection of 
Kp (I have shown elsewhere that the theta squares are repre­
sented by members of this system). When p = 2, quadrics in 
Si on P6

3 have the dimension 9 — 6 = 22— 1; when p = 3, cubics 
in S5 with nodes at P8

5 have the dimension C8,5 — 8C6,5 — 1 
= 23 — 1; when p = 4 the argument is not so simple. Quartics in 
57 have the dimension Cu,7 — 1 =330 — 1 ; the 10 triple points 
contribute 10C9,7 = 360 conditions. However, if p and q are 
triple points of the quartic (ax)4 = 0, then (ap)2(<xx)2 = 0 and 
(aq)2(ax)2 = 0. Thus the condition (ap)2(aq)2 = 0 is counted 
twice. The revised dimension is now 330 —1—360+45 = 24 —2, 
and is not the expected 24—1. The method of counting con­
ditions just used is quite all right for 8 triple points, since 
Cnf7 —1 — 8.36 + C8,2 = Cs,4—1 and the system has the equa­
tion ^at/fcjxtXj;x;fc;x;z=0^ (i,j, k, 1 = 0, • • • , 7). If one imposes on 
this system the further conditions that y and z be triple points 
(28 conditions for each with one dependence for the pair) there 
is certainly no easy way to see algebraically that the apparently 
independent 55 conditions are still dependent. Naturally 
such complications would increase with increasing p. If, how­
ever, the coordinate system with reference to N2v~l on Plp+2 be 
employed, the members of the mapping system are represented 
by symmetric forms of order 2p— 1 in p sets of binary variables. 
One may then show with relative ease that the linear system 
S of order p with (p — l)-fold points at Pll+l has the dimen­
sion 2P— 1 and that it contains all the P-loci of the j t h kind 
and dimension j — 1 to the multiplicity p—j, ( i = l , • • • , ƒ>). 
Furthermore, the dimension of the sub-system of S which con-
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tains a pair of .F-loci (paired under /12...2P+2) is also readily 
obtained so that the dimensions of the intermediate singular 
linear spaces of Kp are likewise known. 

Let us pass to a second series of loci on hyperelliptic Kp which 
is suggested by Wp. There is a familiar planar theorem to the 
effect that if two generically placed rational envelopes of class 
m and n are put into generic one-to-one correspondence, the 
locus of the intersection of corresponding lines is a rational curve 
of order m-\-n. We say that the two envelopes generate the ra­
tional curve. The curve is then perspective to either envelope, 
that is, like named point of the one and line of the other are 
incident. This leads to a rough classification of rational curves 
of given order. If, for example, a rational septimic has a per­
spective cubic (necessarily unique), it is generated by this cubic 
and a perspective quartic. The septimic may, however, be 
specialized to the point of having a perspective conic. It then 
has no proper perspective cubic and must be generated by the 
perspective conic and a perspective quintic. The septimic may 
even have a perspective point, necessarily a six-fold point. It is 
then generated by this point and a perspective sextic. Thus the 
septimic must be one of three types, say type (3,4), type (2,5), 
or type (1, 6). 

There is a somewhat analogous classification of hyperelliptic 
curves Hp

v+2. If two such curves Hq
q+2, Hr

r+2 have a common 
center 0 , a line through 0 meets them in two pairs of points 
with a common harmonic pair. The locus of this pair as the line 
turns about 0 is a hyperelliptic i^+r+i on the branch points of 
Hq

q+2, Hr
r+2, with center 0, and with branch points at the 

common points of these two curves. We shall say again that 
HltHl is generated by Hq

qn, Hr
r+\ The condition that Hq

q+2 

should serve as a generator of Hp
p+2 is that the two have the 

same center 0 and that either be on the branch points of the 
other. Analytically the condition is 

fpgq+2 — 2/p+lg(H-l + fp+2gq = 0. 

This imposes q+p + S conditions of which 3g + 5 can be ab­
sorbed by the three forms g, leaving p — 2q — 2 conditions on the 
three forms/. Thus it is p — 2 conditions that the branch points of 
H/^2 be on a conic, p — 4 conditions that they be on a cubic 
through 0, p — 6 that they be on a quartic with node at 0, etc. 
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Hence there is on Wp a locus V2(p) whose points represent 
Hp

p+2's with branch points on a conic, a locus Vt(p) whose 
points represent i 7 / + 2 , s with branch points on a cubic, and 
thus a chain of loci V2(p), V±(p), VQ(p), • • • is defined on Wp. 

The first of these, V2(p), has a number of the outstanding 
properties of the original Weddie W2 with which it coincides 
when p = 2. I give one example. By proper choice of the line of 
reference j 0 opposite 0, the conic on the branch points of Hp

p+2 

can be given the form, y0
2 — (at)2 = 0. The above identity is now 

fp- (at)2 — ƒp+2 = 0, whence the fundamental (2p-\-2)-\c is 
(co/)2/>+2=/p

2
+1— fp

2 - (at)2 = 0. Thus, for the branch parameters 
ti, we have fP+i(ti)/fp(ti) =V(ati)2, and the formula (A) given 
earlier becomes now 

This for variation of the quadratic (at)2 yields the 002 points 
of V2(p). It may be shown that the point given remains on 
V2(p) for arbitrary choice of signs of the 2^ + 2 radicals. If the 
sign of the first radical be changed a new point of V2(p) is ob­
tained which is on a line with the original point and the singular 
point pi. Hence we have the following theorem. 

The line on a singular point of V2(p) and a point of V2(p) cuts 
V2(p) again; if then a point x of V2(p) is projected from the 
2p-\-2 singular points of V2(p) into 2p-\~2 new points of V2(p), 
if these new points are similarly projected into further points, etc., 
a system of 22p+i points on V2(p) is obtained which is closed under 
such projection. 

For p — 2 and V2(p)~W2 this theorem has been given by 
H. F. Baker. 

There are on Pip+2 °°4 normal elliptic curves E2p. The map­
ping system S cuts such an E2p in a gi2 which has four branch 
points on Wp. If E2p is binodal and therefore degenerate, the 
locus of the nodes is V2(p) ; if it is not so degenerate, the locus 
of the 004 branch points is V±(p). This exhausts the possibilities 
connected with the family of elliptic curves, and I have not thus 
far found a generalization of this family which will serve for the 
isolation of V$(p), V%(p), etc. 
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In conclusion I wish to call attention to a third system of loci 
on Wp which arises from extensions and generalizations of a 
theorem due to two of my associates of other days at Johns 
Hopkins, Professors Morley and Conner. There is a fairly old 
theorem relating to the Kummer surface K2, with many inter­
esting contacts, which states that the section of K2 by a generic 
plane is a generic quartic curve. This might be expected since 
K2 has three absolute constants and the plane adds three more. 
However, W2, the Weddle quartic surface, also has three abso­
lute constants, but its generic section, Q, as Morley and Conner 
pointed out twenty-five years ago (American Journal of Mathe­
matics, vol. 31 (1909),p. 263),is not a generic quartic curve. They 
determine the invariant of degree six which Q satisfies. They 
explain its geometric character by using a pencil of Weddle's 
as follows. The W2 is localized by its hexad of nodes P6

3 on iV3, 
that is, by a binary sextic, (cet)6. The pencil of binary sextics, 
X(co/)6+[(/x/)3]2, determines a pencil of W2s, and in particular 
the member determined by [ (MO3]2 contains the plane (/4)3> 
trisecant to iV3, as a part. Thus the quartic section Q of W2 by 
this plane is the same as the section of each W2 of the pencil. 
But each W2 contains the 15 lines joining its hexad of nodes. 
Hence the <*>1 sextics \(co£)6+ [(MO3]2 determine on iV3 oo 1 six-
points whose complete figures are cut by a plane in the quartic 
curve Q containing <x> * configurations (153, 2O4). 

This notion of a pencil of W2s cannot be extended. The 
method which I am about to give not only yields additional in­
formation with respect to the section of W2 but also applies to 
the section of Wp in S2p-i by a (p +1)-secant Sp of N2v-.\. Taking 
(cot)6 = fi —ƒ2ƒ4, we have already indicated the roots h, • • • , h 
of (w/)6, and the roots ru r2 of f2. Let also Si, s2, s$ be the roots of 
/3, so that 

fz = c(tsi)(ts2)(tsz). 

For variation of the constant factor c in / 3 we have in 

(œty - fi = - /2/4 

a pencil of binary sextics and f2 is a duad in some hexad of the 
pencil. The seventh powers of the 9 linear forms, (tti), (tSj), are 
connected by a linear identity, and the polar of ƒ4 as to this 
identity yields the following identity : 
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g (thy-Mh) | g fay-Ms,) = o 
»--i fz{ti)'0>f(k) j=x <a(s,)-fl(s,) 

Since Mb)/Mti)=Mti)/Mti), we see by comparison with (A) 
that 

(C) - (a/)3 = £ - 7 ^ 7 7 ^ ' 

Since also Msj)/<a(sj) = — l//a(sy), 

(D) (a/)3 = E - ^ T — • 

Hence, for given trisecant plane ir = SiS2S3 of iV3, and for a 
selected duad ƒ2, in some hexad of the pencil above, there is a 
point (at)z on W2 which, according to (C), is on the plane 7r, 
and, according to (B), is on the bisecant nr2 of iV3 determined 
by / 2 . This proves the Morley-Conner theorem that the section 
Q of W2 by 7T contains the inscribed configurations which they 
observed. 

But the three-term expression (D) contributes new informa­
tion. I t contains the variable duad ƒ2 of the pencil in the denomi­
nator. Hence the point of Q on the left is the quadratic transform 
of the point f2(t) in a plane irf. This yields the following theorem. 

If the hexads of the pencil, (co/)6—/3
2 = 0 , be plotted as hexads 

of tangents of a norm-conic N2 in a plane ir', the locus of the vertices 
of the complete hexagons is a quintic curve with three nodes whose 
joins are the three tangents ƒ3 = 0 of N2 ; and the transform of this 
quintic by a quadratic transformation with F-points at the nodes 
is a section Q of W2 by the plane ƒ3 = 0 with the configurations 
indicated. 

These results can be generalized immediately to apply to the 
curves in which Wp is cut by the (£ + l)-secant Sp's of N2p~] 

determined by /p+i. They can also be extended to cover the 
cases where the (£ + 1) -secant Sp passes through some of the 
points of Plp+2- Suppose, for example, that 7 + 2 of the branch 
points, determined by \j+2(t)=0, are on the line yo = 0. Then 
X3+2 is a factor of ƒ3,4.2, of (cot)2p+2

f and therefore of/p + i . If we set 

(0)t)2p+2 = /i2p-rA/+2, fp+2 = gp-yXj+2, fp+1 = gp-j-i'\j+2, 
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the pencil, analogous to the above pencil of sextics, becomes 

For j = — 2 we have the generic case mentioned above. For 
j = — 1, j = 0 we have sections of Wp by Sps on one or two 
points of P2p+2- For j = 1, 2, • • • , p we have curves on Wp which 
also lie on the F-spaces of the first, second, • • • , pth kind. 

I may say finally that the importance of Wv lies in the infor­
mation which it furnishes with respect to those properties 
which differentiate the hyperelliptic Kp from the Kp attached 
to more general theta functions. 

The study of this manifold has had for me a peculiar fascina­
tion because of the demand it makes on geometric ingenuity. 
General methods of attack have been quite uniformly fruitless 
because of one or another special characteristic of the manifold. 
Doubtless we all are accustomed to seeing the waste basket 
claim the major part of our labour. In this respect at least I 
may justly assert that Wp is the most outstanding topic I have 
ever studied. 
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