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ON T H E rTH D E R I V E D CONJUGATE FUNCTION* 

BY A. F . MOURSUND 

1. Introduction. We assume throughout this note that the 
function f(x) is Lebesgue integrable on (—7r, 7T) and of period 
2w; then the series 

00 

(1) ]T) (— bn cos nx + an sin nx), 

where an and bn are the Fourier coefficients, is known as the 
conjugate Fourier series. 

I t is customary to associate with the series (1) as sum or 
"conventionalized" sum the conjugate function of f(x) which is 
either the limit 

- 1 CT $ 
(2) Ti(x) s lim I {ƒ(> + s) - f(x - s)} ctn - ds, 

or the equivalent limit 

- 1 f °° ƒ(> + s) - ƒ 0 - s) 
(3) f2(x) = lim I ds; 

and to associate with the first derived series of the series (1) the 
first derived conjugate function which is either the limit 

(4) 7/ O) = Hm f {ƒ0 + s) +f(x-s) - 2f(x)} csc2-ds, 

or the equivalent limit 

- 1 f" ƒ 0 + s) + ƒ 0 - s) - 2f(x) 
(5) ƒ , ' ( * ) = Hm ^ ^ ^ - - ^ < M 

7T €^° J € S2 

* Presented to the Society, December 1, 1934. 
t For a proof of the equivalence of (2) and (3) see G. H. Hardy and J. E. 

Littlewood, The allied series of a Fourier series, Proceedings of the London 
Mathematical Society, vol. 24 (1925), pp. 211-246 (p. 221). A proof of the 
simultaneous existence of (4) and (5) is given by A. H. Smith, On the summa-
bility of derived series of the Fourier-Lebesgue type, Quarterly Journal of Mathe­
matics, (Oxford Series), vol. 4 (1933), pp. 93-106 (p. 106) ; that they are equiva­
lent follows from Theorem 1 of this note. 
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The limits (2) and (3) and, provided ƒ (x) is of bounded variation, 
the limits (4) and (5) exist almost everywhere.* 

In a recent paper,f generalizing (2) and (4), we denned the 
rth derived conjugate function as follows. 

DEFINITION 1. 

_ ( r ) / ( - l ) r + 1 f drctJi{s/2) 
h (%) = Hm I Ar(s) ds — Cr, 

2w «-o J€ dsr 

where f{i)(x) designates the ith generalized derivative of ƒ(#), 

Ar(s) s ƒ(* + *) + ( - l)r+1f(x - s) 

(6) t(r-l)/2] 5r-l-2i 

- 2 E —:/<-M»(*), 
and 

(7) 

« ( r - l - 2 i ) ! " 

[r/2]-l [rW-1 T2/-2* J2/+1 c t n ^ / 2 ) l 

S £i (2/+l-2i)! is*** J w 

We used the limit fiKr)(x), which (i) exists wherever f(r+1)(x) 
exists and (ii) exists almost everywhere when dr~lf(x)/dxr~l is 
of bounded variation, as the NZf+1 sum of the rth derived series 
of the series (1)4 

For use as a sum function in theorems concerning the sum-
mability of the rth derived series of the series (1) by certain 
standard methods, among which is the first form of the 
Bosanquet-Linfoot (a, ]8) method,§ it is desirable to define an 
rth derived conjugate function of the type (3), (5). In this note 

* A. Plessner, Zur Theorie der konjugierten trigonometrischen Reihen, Mit-
teilungen des Mathematischen Seminars der Universitât Giessen, Heft 10 
(1923). 

t A. F. Moursund, On summation of derived series of the conjugate Fourier 
series, Annals of Mathematics, (2), vol. 36 (1935), p. 184. Throughout this note 
[r]is the greatest integer ^r. Hence Co, G = 0 . For the definition and properties 
of generalized derivatives see Ch. de la Vallée- Poussin, Approximation des fonc­
tions par des polynômes, Académie Royale de Belgique, Bulletins, Classe des 
Sciences, (1908), pp. 195-254 (p. 214). 

t See loc. cit. The NZp method includes as a special case the second form 
of the summation method defined by L. S. Bosanquet and E. H. Linfoot in 
Generalized means and the summability of Fourier series, Quarterly Journal of 
Mathematics, (Oxford Series), vol. 2 (1931), pp. 207-229. 

§ Loc. cit., p. 208. 
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we define such an rth derived conjugate function, prove that 
the function is equivalent to fi{r)(x), and use it as the Bosan-
quet-Linfoot sum of the rth. derived series of the series (1).* 

2. Definition of f2
{r)(x). Theorems. The function Ar(s) is de­

fined in the introduction only for O^s^w. We now set for 5 on 
( - 0 0 , 0 0 ) 

Ar(s) S f(X + *) + ( - l)r+1f(x - s) 

to ( r - l - 2 i ) r 

where p(s)=s — 2kw for (2& —l)7r<s^ (2fc + l)7r; and we define 
f2Kr)(x) as follows. 

DEFINITION 2. 

h (*)- — h m y -—ds-Cr. 

The following theorems give our principal results. 

THEOREM 1. Whenever either of the limits f \{r) (x), f2(r) (x) exists, 
the other exists and the two are equal. 

THEOREM 2. The rth derived series of the series (1) is summable 
to /2

(r)0*0 by the Bosanquet-Linfoot (ce, j8) method with a = r, 
j3>l or a>r wherever f%(r)(x) exists and f*0\Ar(t)\dt = o(sr+1), 
as s—>0.f 

3. Proof of Theorem 1. We use the following lemma in the 
proofs of both Theorems 1 and 2. 

* An rth derived conjugate function of the type (3), (5) is defined by A. H. 
Smith in a recent paper, On the summahility of derived conjugate series of the 
Fourier-Lebesgue type, this Bulletin, vol. 40 (1934), pp. 406-412; however, it is 
impossible to give good conditions for the existence of his function. A simple 
example will serve to show this. Let f(x)= sin x\ then the second derived con­
jugate series is cos x and converges to 1 when x=0, while for x=0, Smith's 
g(2)(#)=lime_>o— (4/7r)/e°°(sin t/tz)dt and does not exist. All further references 
to Smith are to this paper. 

t We give this theorem primarily to illustrate the use of the function 
f2

{r)(x). The condition /o
-|<4r(O|<ftS!S0(sr+1) is equivalent to the condition 

fo\\Ar(t)\/t
r)dt = o(s); see Smith, loc. cit., pp. 411-412. 
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LEMMA 1. For s on ( —x, T) the series 

E ' • lim ( Z + Z ) 

converges uniformly to the function 

1 drctn(s/2) ( - 1)'+V! 

2 d s ' sr+1 

PROOF. The lemma follows upon differentiating termwise r 
times the series ^2_^/(s + 2kw) which converges uniformly on 
(-7T, TT) to the function (1/2) ctn (s/2)-l/s* 

PROOF OF THEOREM l.f Since Ar(s) is of period 27r and the 
functions 

Ms) t , N ( 1 dr ctn (s/2) t ( - lY+hl) 
• ; 

(1 d*ctn(s/2) ( - 1)«+Vh 
A,(s)< > , 

12 ds' s*+l ) 
Sr+X 

are even functions of s, we have, using Lemma 1, 

, r̂ îf:' f Ms) 

- / 

•ƒ. 

2 — J _ , ( 5 + 2 * T ) ^ 

1 ) r f * A , J 1 d'ctn(s/2) ( - 1)H-V!| 
— I i r W < >ds 
! J _ x

 W l 2 <fc' ^ ƒ 
ds 

, (~ 1)r r * , N /* Jr ctn ( ^ , (- vr+lrl\ * 
r! Jo 12 <fc' jH-i ƒ 

* T. J. Fa. Bromwich, Theory of Infinite Series, 1926 edition, pp. 216-218. 
f This proof was suggested to us by the proof of the equivalence of Ji(x) 

and J*(x) given by Hardy and Littlewood, loc. cit., p. 221. 
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( - l ) r rv dr ctn 0/2) 
J Ar(s) 

2r\ J€ dsr ds 

-\ I AJs)< >ds 
r\ J , I 2 ds" jH-i ƒ 

( - l ) r rr d'ctn{s/2) 
J ArÇ s} — ds + 0(\} as e —> 0. 

2r\ J€ ds 

The theorem follows when we multiply by the constant factor 
— r!/7r. 

4. Proof of Theorem 2. We base the proof of Theorem 2 upon 
the proof of an analogous theorem given by-A. H. Smith, and 
use as far as possible his notation.* The use of/2

( r )(x) instead of 
Smith's gir)(x) as sum for the rth derived conjugate Fourier series 
complicates the proof of our theorem.f 

In addition to Smith's lemmas we need the following funda­
mental lemma. 

LEMMA 2. For 0>O, 

[<r - l ) /2 ] f(r-l-2i)(x) f co r-l-2i_ (r) 

2(-D' £ / , VM *W X+iAn,t)dt 
i=0 (r - 1 - 2i)\ J o 

= Cr + 0(1) as n—> <*>. 

PROOF. Using Smith's Lemmas 1 and 2 and our Lemma 1, we 
havej 

t)dt 
/

' °° r-l-2i __ (r) 1 r00 r-l-2i _ (r) 

\P(t)\ *r+lA", DM = — {P(t)} K+lA", 
0 2 «/_oo 

1 " / • ( 2 * + 1 ) T r _i_2i_(r) 
2 -00 J (2fc-l)?r 

1 °° n * r-l-2i _ (r) 
= — Z ) I * V-f-iwsO, * + 2for )* 

2 _oo »/_„. 

* Loc. cit. The analogous theorem referred to is Smith's Theorem 1. 
t See, however, the footnote in which Smith's paper is first cited. 
t We assume throughout this proof and the remainder of this section that 

the reader is thoroughly acquainted with Smith's paper, loc. cit. As an im­
mediate consequence of Smith's Lemma 1, his Lemma 2 holds for all />0. 
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r-l-2i 

(j _ I — 2i)\ r-2i-JT(.r-j)/ 

' ( r - 2 t - i ) ! 

1 oo / r - l - 2 i 

= T E{ E(-
r - 2 * - ƒ _ ( » • - ƒ ) 1 T 

/ Xr+i,/5(», / + 2kw) 
- 1 — 7 T 

+ (~ 1) (f - 1 - 2i)! I Xr+1,/3 (», * + 2feir)*> 

1 r~±^2i (r - 1 - 2i)\ 

2 ^ ï (r-2i-j)\ 

£ |x r + 1 > / 3{^ (2* + ! ) * • } - ( - 1) XH-M{», (2k - ! > } } 
fc. 

( f - 1 - 2 * ) ! . . „_ A ( -(2j+l)\ inn-t ( f - l - 2*) • ( 

,•_< (r — 2i— j)l *__„ Kir 1+2 (r-2i-j)\ Cl„ IT{(2^ + 1)TT}2/-

o(l) as w—» oo "» 
+ {(2^ + l)7r}2/+3J 

( _ l ) r [ r / 2 ] - l ( f - 1 - 2 * ) ! . . ^ ^ C t n C ^ n 
- - \ 7T2J-21 

2 £ ( r - 2 * - . / ) ! ds*»* Js==„ 
+ o(l) as n —•> oc . 

When r is even [ ( r ~ l ) / 2 ] = [r/2] — 1, and when f is odd 
[ 0 - l ) / 2 ] = [r /2] , but the term where * = [ ( r - l ) / 2 ] vanishes. 
The lemma follows when we multiply by the factor 
2 ( - l ) r / ( r - 1 " 2 0 («) / ( r — 1 -2*) ! and sum with respect to i. 

PROOF OF THEOREM 2. To prove our Theorem 2 we replace 
cor(0 by Ar(t) in the preliminary material and proof of Smith's 
Theorem 1; then using Lemma 2 we see that the nth partial 
Bosanquet-Linfoot (f, j3) sum of the rth derived conjugate 
Fourier series is 

(9) 
r-J-1 C °° — (r) 

ƒ 3 ( - 1 ) I ^rCOXr+i^C» , 0 * - C r + o ( l ) a s U - > 00 . 
• ^ 0 

Equation (9) takes the place of Smith's equation (13). To the 
right-hand sides of his equations (14) and (15) must be added, 
respectively, C2r+o(l) and — C2r+i+o(l). When modified as 
indicated above, Smith's proof establishes our theorem. 
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