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MECHANICAL INVARIANTS OF T H E 
SWEEPING-OUT PROCESS* 

BY C. H. DIX 

In this paper we prove the following theorem. 

THEOREM. If a general bounded distribution of positive mass in 
a closed connected region R is swept out on a surface S entirely en­
closing R in its interior, then the center of gravity and the principal 
axes are invariants for the sweeping-out transformation. 

Let the distribution be given by $(e), which means the mass 
associated with the point set e. Then the potential is 

V(M)= f ^=d*(eP). 
J B MP 

The coordinates xy y} z of the center of gravity of the distribu­
tion are, respectively, 

-évLxpdHep)' ~éölypdHep)> ikLzpdHep)-
We have the following lemma. 

LEMMA. If $ is such that a density p exists and V2V= — 47rp 
is satisfied everywhere, then the sweeping-out on a level surface 2 
of V entirely including R leaves the center of gravity and the prin­
cipal axes invariant. 

The surface 2 is formed by setting F = 5 > 0 . Let Po be the 
center of gravity of the distribution $ . Let Ro be the lower 
bound of the radii of all spheres containing R with center 
Po. If Mo is a large integer, P o n 2 , and ô = $>(P) (M0Ro)~l, then 
we shall have R0(M0-1) ^ P P o ^ P o ( M 0 + l ) . Hence S lies in 
the spherical shell whose center is the point Po and whose 
bounding radii are Po(il^*o—1) and P0(ikf0+1). 

Let u be any function harmonic in a closed region v containing 
Po whose boundary is the level surface S. Then, applying Green's 
Theorem, we have 

* Presented to the Society, Jane 20, 1934. 
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ƒ• dV r du c C 

u ja- _ I v—da= I (W2u - uV2V)dr = 4TT updr. 
s dn J % dn Jv Jv 

s 

Since F is a constant on 2 and u is harmonic inside S, 

du C du 
'— Jo- = F 

2 dn J s 
Hence 

f 1 <9F f 
J ? 4=T dn J v 

ƒ> du r du 

V— de = V \ —da = 0. 
s dn J 2 dn 

S 47T d » 

Let u = x. Then 

r * dV c 
I x do- =* I xpJr = #$(!£) , 

J z 4ir dn J v 
with similar relations for J, s, ley, ~yx, and £#. The expression 
(dV/dn)/(4:T) is of course the surface density of the swept-out 
mass on S. So the lemma is proved. 

The extension to a general distribution is made by taking the 
iterated volume average of the potential until the corresponding 
mass distribution is sufficiently smooth to give rise to a potential 
satisfying Poisson 's equation. 

The treatment of these average functions has been carried 
out by G. C. Evans in a forthcoming paper.* They are used to 
prove the fundamental theorem of F. Riesz on the mass as­
sociated with a sub- or super-harmonic function. Now assuming 
the Riesz Theorem, let \pi(P)\ be the sequence of positive 
densities corresponding to the super-harmonic functions 
{ V(fit rif Yi, fi\ M)} which are the fourth volume averages of V 
over spheres of center M and radius r»-. For each of these density 
distributions the conditions of the hypothesis in the lemma are 
satisfied. 

For a small value of S selected as in the lemma, Vi(M) 
= V(u, Yi} Y^ Yi\ M) is constant with respect to i on S, since the 
spherical volume average of a harmonic function gives the same 
harmonic function. Hence the same level surface 2 may be used 
at each stage in the sequence. At each stage 

r 1 dVi r r 1 dV r 
I u da = I upidr = l u da = I ud<bi(eP)} 

J s 47T dn J v J s 47T dn J v 

* G. C. Evans, On potentials of positive mass, Transactions of this Society, 
vol. 37 (1935), No. 2. 
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where 

$i(e) = I Pidr. 

The limit of the sequence of integrals we may denote by 
ü$(R). Since u is bounded and continuous in v, and the <E>4 are of 
uniformly bounded variation on v, we may apply the Helly-
Bray* theorem to obtain the result 

ü$(R) = I ud$(ep). 
J v 

Hence the lemma is true if $ is a general bounded positive dis 
tribution. 

To prove the theorem consider a level surface S of F en­
closing both R and 5 in its interior. Consider the following 
sweeping-out transformations: TRS = sweeping-out of R on 5, 
Ts s = sweeping-out of S on 2 , and TR S = sweeping-out of R on 
2. Now TRZ^TSZTRS. Furthermore, TRZ and Ts? leave the 
center of gravity invariant. Thus we have center of gravity of 
distribution on R = center of gravity of distribution on 2 = center 
of gravity of distribution on S. A similar argument handles the 
principal axes. 

If we have a closed surface S' bounding a region R' for which 
the Green's function can be constructed, this Green's function 
is the potential of the negative unit mass that has been swept 
out from the pole on Sf and the positive unit point mass at the 
pole. Concerning the distribution of this swept-out mass we 
may observe the following property which is a corollary of our 
theorem : the swept-out point mass has its center of gravity at the 
pole and its principal axes of inertia are arbitrary. 

That the distributions arising from the sweeping-out of a 
point mass are not the only ones with indeterminate principal 
axes is immediate. Take for example four equal point masses at 
the vertices of a regular tetrahedron (or take a homogeneous 
cube). In the cube the three moments of inertia about axes 
through the center normal to the faces are all equal. The mo-
mental ellipsoid is therefore a sphere. The momental ellipsoid 
for the tetrahedron has the same form relative to the four lines 

* H. E. Bray, Annals of Mathematics, (2), vol. 20 (1918), pp. 177-186; 
see p. 180. 
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through the center of gravity and the vertices and so is a 
sphere. 

The statement of our main theorem can be given in more gen­
eral form but our statement is chosen on account of its intuitive 
simplicity. The set R we may take as merely closed and bounded ; 
S may be the frontier of a bounded domain, D, which contains 
R. Then the conclusion remains the same as we have stated it 
in the simpler case. 

T H E R I C E INSTITUTE 

A DECOMPOSITION T H E O R E M FOR CLOSED SETS* 

BY G. T. WHYBURN 

Let P be any local f topological property of a closed set such 
that if K is any compact closed set lying in a metric space, then 
the set of all non-P-points of K is either vacuous or such that 
its closure is of dimension > 0 . The following are examples of 
such properties: (i) local connectivity, (ii) regularity (Menger-
Urysohn sense), (iii) rationality, (iv) being of dimension <n, 
(v) belonging to no continuum of convergence, (vi) belonging 
to no continuum of condensation. In fact, it will be noted that 
in each of these cases, every non-P-point of a compact set K 
lies in a non-degenerate continuum of non-P-points of K. We 
proceed to prove the following theorem. 

THEOREM. If N denotes the set of all non-P-points of a com­
pact closed set K in a metric space and if K is decomposed upper 
semi-continuouslyX into the components of N and the points of 
K — lV, then every point of the hyper s pace H is a P - point of H. 

* Presented to the Society, October 27, 1934. 
t For the purposes of the present paper we shall understand by a local 

property of a set K a point property P such that if some neighborhood of a 
point x in K has property P at x, then K has property P a t x; and conversely, 
if K has property P at x, then any neighborhood of x in K also has property 
P a t x. A point x of K will be called a P-point or a non-P-point of K according 
as K does or does not have property P at x. 

% For the notions relating to upper semi-continuous decompositions and 
for a proof that our particular decomposition is upper semi-continuous, the 
reader is referred to R. L. Moore, Foundations of Point Set Theory, American 
Mathematical Society, Colloquium Publications, 1932, Chapter 5. 


