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ON D I R E C T PRODUCT MATRICESf 

BY W. E. ROTH 

1. Introduction. If A = (a»/), (i = 1, 2, • • • , m;j= 1, 2, • • • , »), 
is an mXn matrix and B is a, pXq matrix, then the matrix, 
P = (ai3-B) =A(B), of order mpXnq, whose elements occur in 
mn blocks, ai3B, is the direct product of A and B.% 

In the present paper we determine the elementary divisors of 
A{B)—\I and of pA(I)+aI(B)—\I, where p and a are scalar 
constants, and where the elementary divisors of A — A/ and of 
B—\I are known. Finally, §3 takes up the discussion of the 
linear matrix equation 

AxXxBi + A2X2B2 H + ArXrBr = C. 

The reduction of this equation to an equation whose solution is 
known is accomplished by means of direct product matrices 
and thus perfects a procedure first noted by MacDuffee.§ 

2. On Elementary Divisors of A(B)—\I and of pA{I) + 
aI(B)—\I. In this section it will be convenient to indicate the 
order of a matrix by subscripts; thus Aa,p is an aXP matrix, 
Bp is a square matrix of order p, and Ip is the unit matrix of 
order p. Matrices will be designated throughout by capitals, 
whereas lower case letters will be employed to denote scalars, 
such as parameters, constants, and the elements of matrices. 
Moreover, all scalars will be regarded as belonging to the complex 
number field. Hence, for our purpose, {aijB) = (Baa) —A(B) 
= {B)A. 

f Presented to the Society, April 6, 1934. 
X Zehfuss, Ueber eine gewisse Déterminante, Zeitschrift für Mathematik 

und Physik, 3te Jahrgang (1858), pp. 298-301, was perhaps the first to study 
determinants of this form. Rutherford, On the condition that two Zehfuss matrices 
be equal, this Bulletin, vol. 39 (1933), pp. 801-808, called P the Zehfuss matrix 
of A and B and devised the notation here employed. Dickson, Algebras and 
their Arithmetics, 1923, p. 119, and MacDuffee, The Theory of Matrices, 1933, 
p. 81, employ the term direct product to designate P. The reader is also referred 
to the latter treatise for a more complete discussion of direct product matrices. 

§ MacDuffee, loc. cit., p. 89. 
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If Aa,e = (aij), C/3,7 = (c»,-), Ba>h, and Db,c are given matrices, 
then 

(i) 

Aa>p{Ba,b)Cp,y{DbtC) = (aijBatb)(cjkDb,c) 

= ( 4Li Q>i2cikBafbDb,c) = AatpCp,y(Ba,bDb,c)' 

This identity was first proved by Stephanos, t Evidently, if 
Qm and Rn are non-singular matrices,then Qm(In) and Im{Rn) 
are likewise non-singular matrices. Hence, according to (1), 

Qm(ln)'• 1m(Rn) = Im(Rn) ' Qm(In) = Qm(Rn)', 

and Qm(Rn), being the product of non-singular matrices, is also 
non-singular. If QT

m is the inverse of Cm and R*n that of Rn,t 
then QlniR-l) is the inverse of Qm{Rn),% for by (1), 

(2) \Zm\-Kn)'\lm \-K-n / — J-mSj-n) -* ran • 

Let Qm and Rn be the non-singular matrices which transform 
A m and Bn to their respective normal forms, A m* and Bn*. That 
is, 
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t Stephanos, £«r wwe extension du calcul des substitutions linéaires, Journal 
de Mathématiques, (5), vol. 6 (1900), pp. 73-128. 

î This notation for inverse is due to MacDuffee, loc. cit. 
§ Stephanos, loc. cit. 
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(i = l, 2, • • • , r; 7 = 1,2, • • • , 5). Consequently ^4m —X/m has 
the elementary divisors (a*—X)w», ( i= 1, 2, • • • ,r), and Bn—\In 

has the elementary divisors (6,-—X)w>', (7 = 1, 2, • • • , 5). We 
shall prove the following theorem. 

THEOREM 1. If A m—X/m a^J Bn—\In have the elementary di­
visors (ai — \)mi, (i = 1,2, • • • ,r), and (bj—X)ni,(j= 1,2, • • • ,5), 
respectively, and if ix^ is the lesser of the integers mi and nj or their 
common value, then the matrix Am(Bn)—\Imn has the elementary 
divisors . 

( a ^ - X ) - ^ - 2 ^ (& = 1, 2, • • •, /!*/), 

if aibj^O, \mi occurring n2- times, if a; = 0, bj?£Q, Xw/ occurring mi 
times, if a^O, b3 = 0, and X, X2, • • • , X^' -1 ea£& occurring twice 
and XM'7 occurring mi+nj — 2fXij-{-l times if ai = bj = 0, (i = 1, 
2, • • . , r ; j = l , 2 , • • . , * ) . 

Now by (1), (2), and (3), we have 

Qm(Rn)[Am(Bn) — ^ImnjQm^iRn1) = AJf(B^) — \1' mn\ 

consequently the elementary divisors of Am{Bn)—\Imn are 
identical with those of ^4m*(i?n*)— X/mn. Upon writing out the 
latter matrix, we readily see that its elementary divisors are 
identical with the aggregate of those of the r matrices 

<^mi(B*) — \Imin9 ( i = 1, 2, • • • , r ) , 

each taken separately. By an appropriate interchange of rows 
and of columns the matrixoAmi(Bn*)— XImin can be transformed 
to an equivalent matrix having the w ^ X W i % matrices 
<^»»<(^»i)'"^»i»y> (i—l» 2, • • • , s), in its principal diagonal 
and zero matrices elsewhere. Hence the elementary divisors of 
Am(Bn)—\Imn are identical with the aggregate of those of the 
rs matrices 

crfmtCBn,) - X / W , np (* = 1, 2, • • • f ; j = 1 2, • • • , * ) , 

each taken independently. 
If frj-T^O, B̂ny is a non-singular matrix of order %j\ conse­

quently, by the method of Bôcher,f 

(5) e/2Wi(^Bn;.) — \Iminj 

t Bôcher, Introduction to Higher Algebra, 1922, §§91 and 92. 
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has (mi—l)n3' unit invariant factors and its elementary divisors 
in X are identical with those of (a^„ ;.— \Inj)

mi. If we let fin 
be the lesser of the two integers m»- and n3 or their common 
value, this matrix has the elementary divisors (dib3—X) m*+n/-2A:+i, 
(&=1, 2, • • • , fiij), if diT^O, and the elementary divisor \mi 

occurring n3 times, if #; = 0. This establishes the first two cases 
under the above theorem. 

If bj = 0 and ai^O.^Amii^m) is a nilpotent matrix such that 
its fijth. power is zero but no lower power vanishes. Hence, in 
this case, (5) has only elementary divisors of the form X*, 
where h cannot exceed n3. But since a»-5^0, (5) has a non-singu­
lar minor of order (n3'—l)nii which is independent of X; hence 
at most mi elementary divisors can be powers of X. The deter­
minant of (5) is Xmin>, consequently the mi elementary divisors 
must be \nK This establishes the third case under the theorem. 

If a,i = b3 = 0,zAmi(
cBnj) has {mi —1)(«$ — 1) unit elements in 

the (w,-+l)th diagonal above its principal diagonal and all re­
maining elements are zeros. Hence (5) has a non-singular minor 
of order ( w » - l ) (n3 — 1) which is independent of X, and no such 
minor of higher order. Consequently this matrix has m%n3 — 
(tni — l)(n — l)=mi+nj—l elementary divisors which are 
powers of X. Now(yfw,'(finy) is nilpotent of degree ixi3, for in the 
present case the fiijth power of either oAmi or of <Bny vanishes 
but neither vanishes for powers less than /x;/. Consequently (5) 
has nii+n3'— 1 elementary divisors X*, whose degree k does not 
exceed na and must have at least one of degree /z;y. We may, 
therefore, assume that (5) has the elementary divisors \k oc­
curring Vk times, (&=1, 2, • • • , /x».). Hence its determinant 
is —X raised to the power, 

(6) Vi + 2v2 + ' • ' + flijVuf = MiMj. 

Now let the normal form of çAmi(<Bnj) be P , where P has the 
form corresponding to that for Am and Bn as given by (4). 
Then Pk has 

vk+i + 2vk+2 + ' • ' + (pa ~ *)?/««,• 

unities in the &th diagonal above its principal diagonal and 
zeros elsewhere, and [e^wi(^Bn/)]

fc has ( w j - i ) (tij — k) unities 
in the k(n3-\-l)th diagonal above its principal diagonal and 



I934-] DIRECT PRODUCT MATRICES 465 

zeros elsewhere. Since these two matrices are of the same rank 
for all values of k, we have 

(7) vk+i + 2vk+2 + • • • + (m,- — *>„<ƒ = (mi — k)(nj — k), 

(&=1, 2, • • • , fjLij—1). The fXij equations (6) and (7) have the 
solution Vk = 2, (k=l, 2, • • • , /ity—1), and vliij = mi+nj--2p,ij> 
+ 1. Thus, in case ai = bj = 0, (5) has the nti+nj—l elementary 
divisors, stated in the above theorem. 

COROLLARY. Under the hypotheses of the theorem above 
Am(Ip)—\Imp has the elementary divisors (a,- — \ ) m i , ( i = l , 2, 
• • • , r), each occurring p times, and Ip{Bn)—\Inp has the ele­

mentary divisors (&/—X)*v, (7=1 , 2, • • • , s), each occurring p 
times. 

This corollary follows directly from Theorem 1, for in this 
case, the matrix IP—\IP has the elementary divisor 1—X oc­
curring p times, hence /zt-/=l, ( 7 = 1 , 2, • • • , p), in the present 
case. Of course, this corollary is obviously true without recourse 
to the above theorem. 

THEOREM 2. Under the hypotheses of Theorem 1, the matrix 

(8) pAn(In) + <jIn{Bn) - y^Imny 

where p and a are scalar constants not zero, has the elementary 
divisors (pai+(rbj-\)mi+nru+l,(k = 1,2, • • • , jLtt-/;i = l ,2 , • • • ,r; 
7 = 1, 2, • • • ,s). 

By an argument parallel to that followed in the proof of 
Theorem 1 we can show that the elementary divisors of pA m(In) 
+<rlm(Bn) —\Imn are identical with the aggregate of those of 
the rs matrices 

\paJn, + vVni - X/wJmS (i = 1, 2, • • • , r; j - 1, 2, • • • , s). 

Hence the elementary divisors of (8) are those given by Theo­
rem 2, if neither p nor a is zero. The case where p or a is zero is 
covered by the Corollary above. | 

f Recently the author learned that A. C. Aitken, in a paper that will ap­
pear soon in the Proceedings of the London Mathematical Society, gives re­
sults quite closely analogous to those of Theorem 1. 

file:///paJn
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3. The Linear Matrix Equation. We shall take up briefly 
the linear matrix equation 

(9) iïAiXiBi = C, 

where Ai are mXni matrices; B^ (i=l, 2, • • • , r), are niXn 
matrices; and C is an mXn matrix, all known; while X,-, (i= 1, 
2, • • • , r), are unknown m 4X m ; matrices, f We here transform 
this equation to an equivalent equation by means of the matrix 
MR and direct product matrices, where MR is defined as follows : 
Let M= (niii) be an aX/3 matrix and let 

Mi = (miu m,i2, • • • , my), (i = 1, 2, • • • , a); 

then MR = (Mh M2, • • • , Af«), and is consequently a one-rowed 
matrix of aft elements. Similarly Mc is the matrix resulting if the 
second, third, • • • , last column of M be written each below the 
next preceding column ; thus it is an aftX 1 matrix. We can then 
show that MCR = MTR, MRT = MTC, where MCT is the transpose 
of M c , etc. Let 

(10) Yi = AiXi, Zi = YiBi, (i = 1, 2, • • • , r); 

then Zi=AiXiBi. We can readily show from (10) that 

Y? = XiR[Af(Ini)l Z? = Y?[lm{Bi)l 

where AiT is the transpose of Ai. Hence, by (1), 

ZiR = X*[A?(Ini)]'[rm(Bi)] = X*[,4 *<£<>], 

where AiT(Bi) is then an ntiniXmn matrix. With this trans­
formation, equation (9) becomes ][^œlX/^4iT(J3;) = CR, or 

(11) (AV*, X2*, • • • , Xr*) ^W C* 

That is, (9) is thereby transformed to an equivalent equation 
whose theory is well known, for it is a system of mn linear equa-

t MacDuffee, loc. cit., discusses this equation for the case where the Ai and 
Bi are nXn matrices and gives adequate references. He extends the theory 
in the direction we take here, but introduces an error which will be explained 
below. 



I934-] DIRECT PRODUCT MATRICES 467 

tions in X}£=im^' unknowns and has a solution provided the 
matrix of the coefficients and of this matrix augmented by CR 

have the same rank. j Hence we may state the following result. 

THEOREM 3. A necessary and sufficient condition that the 
equation (9) where Ai are mXmh Bi are UiXn matrices, and C 
is an mXn matrix, all known, while Xif (i — 1, 2, • • • , r) are un­
known miXni matrices, have a solution, is that the matrices 

P = 

AfiBt) 

A2
T(B2) 

Ar
T'(Br) 

and c;> c ^ o, 

have the same rank, and in case C = 0, a necessary and sufficient 
condition that (9) have a solution, Xi, (i = l, 2, • • • , r), not all 
zero is that the rank of P be less than^Ji-x^i^i-

In case Xi = Xi, (i = 2, 3, • • • , r), (11) becomes 

(12) * i B [Z iW<>l =C*, 
which is a system of mn linear equations in the mxni unknown 
elements of X\. This leads to the following theorem. 

THEOREM 4. A necessary and sufficient condition that the 
equation 

(13) J^AtXBi = C, 

where Ai are mXn matrices, Bt are pXq matrices, and Cis an 
mXg. matrix, and where X is an unknown nXp matrix, have a 
solution, is that the matrices 

Q = HAi
T{Bi) and 

( c ; > 
c ^ o, 

have the same rank', and in case C = 0, a necessary and sufficient 
condition that the equation have an solution 1 ^ 0 is that Q be of 
rank less than np. 

f Bocher, loc. cit. 
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Equation (12) may be replaced by the equation 

or the transpose of (12), or that of the present equation. Hence 
any one of the four matrices, 

(H) i: Am), i: ^ w , £ A^B?), i: <̂ >̂ , 
»- l t » l i=*l i = l 

may be regarded as that of the coefficients of the elements of X, 
that is, as Sylvester's nivellateur. f I t should be noted that a 
different arrangement of the elements of X from that given by 
either XR or Xe or their transposes will result in another matrix 
which can be obtained from one of the above by an appropriate 
interchange of rows or of columns. J 

COROLLARY. If AiBi+A%B*+ • • • +ArBr = 0, where Aï 
(î = l, 2, • • • , r), are mXn matrices and Bi are nXp matrices1 

then each of the matrices 

1=1 t » i 

is at most of rank n2—l. 

This corollary is a direct result of Theorem 4, for here 
X = In satisfies the equation (13). I t states, perhaps, the most 
that may be said of such an equation if the B's are not com­
mutative. Phillips§ gives a more restrictive result in case the 
B's are commutative. 

THE UNIVERSITY OF WISCONSIN, 
EXTENSION CENTER, MILWAUKEE, WISCONSIN 

t Sylvester, Comptes Rendus, vol. 49(1884), pp. 409-412, 432-436; 
Mathematical Papers, vol. 4, pp. 199-205. 

% MacDuffee, loc. cit., was perhaps the first to recognize Sylvester's nivel­
lateur as the sum of direct product matrices, but the matrix 46.2 as he gave it 
cannot answer the purpose and should be replaced by one of the four matrices 
in (14). Likewise in his theorem 46.31, the Sylvester nivellateur should be 
A(l)+l(BT) or (AT)l+(l)B or the transpose of either of these, 

§ Phillips, Functions of matrices, American Journal of Mathematics, vol. 
41 (1919), pp. 266-278. 


