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SOME DEFINITE INTEGRALS INVOLVING
SELF-RECIPROCAL FUNCTIONS

BY BRIJ MOHAN MEHROTRA

1. Introduction.In one of his papers, Ramanujan* has proved
formally that if
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An examination of the proof shows that it rests on the fact
that sech[x(w/2)Y2] is self-reciprocal for cosine-transforms.
The present investigation was suggested by this fact. The object
of this note is to obtain a generalization of (1).

Following Hardy and Titchmarsh, I will say that a function
is R, if it is its own J, transform, and it is —R, if it is skew-
reciprocal for J, transforms; also, for Ry and R_yj, I will write
R, and R., respectively.

2. THEOREM 1. If
¢o(2) = w”?f e ' 12f(x) cos twx dx,
0

where f(x) is R, and is such that f: l f(x)[ dx converges, then
(2) bu(t) = e *2y.(it).
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This double integral is absolutely convergent, as we see by
comparison with

* Ramanujan, Some definite integrals, Collected Papers, Cambridge Uni-
versity Press, 1927, pp. 202-207.
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Hence we may invert the order of integration in (3). Thus
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which establishes (2). As an illustration, (2) may be verified for
&) ==,
3. THEOREM 2. If

Yo(t) = wa " 12f(x) sintwx dw,
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where f(x) is Ry and is such that [, :[ fx) I dx converges, then
4 Yo(t) = — e %1%y, (it) . 1

This can be proved in exactly the same way as Theorem 1. To
illustrate this theorem, (4) may be verified for f(x) =xe=="/2,
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+ Theorems 1 and 2 themselves depend upon the fact that e=»*/2 is R, and
can be further generalized, but the generalized theorems do not seem to be
very useful.



