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appear in the second parenthesis as a factor only if S4 contains 
g, and in the third parenthesis only if ô6 contains g, and so on. 
But since ô» = l, g must be a unit. If the quantities in paren­
thesis are relatively prime it is well known that we can find 

that (3) is satisfied. 
If n is odd the procedure is just the same with the exception 

that the single term in the last parenthesis is automatically 
prime to those in the preceding parentheses which have been 
determined as above, and as before we have only to determine 

The above theorem not only proves the existence of the x's 
but also enables us to calculate them. 
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ON CONTINUED FRACTIONS WHICH R E P R E S E N T 
MEROMORPHIC FUNCTIONS* 

BY H. S. WALL 

1. Introduction. In this paper I shall give sufficient conditions 
in order that a continued fraction of the form 

bi b& bzz 
(1) — . . . 

1 + 1 + 1 + 
with arbitrary real or complex coefficients not zero shall repre­
sent a meromorphic function of z. Van Vleckf has shown that 
a sufficient condition is the following : 
(2) limftn = 0. 

Stieltjes J proved tha t (2) is necessary as well as sufficient when 
the bn are real and positive. Van Vleck§ proved that when the 
bn are real and &2rAn+i>0, and the roots of the denominators, 
£*2W+i, of the ( 2 « + l ) t h convergents of (1) have distinct limits, 
not zero, for n = oo , then the condition (2) is necessary and suffi­
cient in order that (1) shall represent a meromorphic function of 

* Presented to the Society, April 15, 1933. 
t E. B. Van Vleck, Transactions of this Society, vol. 2 (1901), pp. 476-483. 
t Stieltjes, Oeuvres, vol. 2, pp. 560-566. 
§ E. B. Van Vleck: Transactions of this Society, vol. 4 (1903), pp. 309-310. 
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z. He thought, and so stated (without attempting proof), that 
the condition imposed upon the roots of D2n+i is always satisfied 
when (1) is meromorphic and b2nb2n+i>0. I have supplemented 
Van Vleck's result (§3) by constructing an example of a con­
tinued fraction (1) with real bn such that &2n&2n+i>0 which rep­
resents a meromorphic function of z and converges everywhere 
except at the poles of that function, but for which we have 
lim sup| bn\ > 0 . 

2. Sufficient Conditions. We shall now develop conditions that 
are sufficient in order that (1) be a meromorphic function of z. 
If we multiply (1) by z, and make the substitution &i = l /a i , 
bn = l/(an-ian), (n = 2, 3, 4, • • • ), that continued fraction be­
comes 

z z z 
(3) _ _ _ . . . . 

ai + a2 + as + 

Let it be supposed that the an are arbitrary real or complex 
numbers different from zero, and that c is a constant so chosen 
that gn=c— ( a 2 + a 4 + • • • +a2n)^0 for n = 0y 1, 2, • • • , 
(go = c). 

Put hn = l /gn , a{ = ho, a2n+i = A» — ftn-i, a2n = 02»-i/W-i, 
(w==l, 2, 3, • • • ) ; and denote by An/Bn, An /Bn the nth con­
vergents of the continued fractions 

(4) 

and 

(5) 
\ / 

z z z 

ai + a2 + #3 + 

1 z z 

ai + a{ + ai + 

respectively. The following relations hold : 

A2n— i — hnA2n A2n+ij 

B2n~i = hnB2n — B2n+ij 
(6) 

^42n--2 = ^42n-l/^n-l, (» = 1, 2, 3, • • • ), 

^2n-2 = B2n-i/hn-i, (flo = ^-1 = ! ) • 



948 H. S. WALL [December, 

These may be verified directly for small values of n, and the in­
duction then completed with the aid of the fundamental recur­
sion formulas for continued fractions. 

Set 

h = 1/fli = 1/Ao; 

( 7 ) hn+1 = l / ( 0 2 n # 2 n + l ) ^ ^ n - l / ( # 2 n - l # 2 n ^ n ) , 

hn = l / ( # 2 n - l # 2 « ) = ^ n - l / ( ^ 2 n - 2 ^ 2 n - l ^ n - 2 ) , 

(w = l, 2, .3, • • • ). Then (5) takes the equivalent form 

h t2z tzz 

T+T+T+ 
The numerators and denominators, Nn

f, Dn' of the nth. con­
vergent of (8) are connected with the An', Bn

f by the relations 

(9) N: = Ail(a{a{ • • • a»'), Z>„' = Bn'l{a{a{ --• an'). 

We shall need the following lemma. 

LEMMA.* If Urn tn = 0, (8) and the equivalent continued fraction 
(5) represent a meromorphic function j\z), and converge uniformly 
over every bounded closed region containing no poles of f{z). If the 
series X X converges absolutely, then there exist two entire f une-
tions u{z), v(z), without common zero, such that 

lim Nn (z) = «(2), lim Dn' (z) = v(z), 

uniformly over every bounded region. 

We are now prepared to prove the following theorem. 

THEOREM 1. The continued fraction (3) f in which the an are 
real or complex numbers different from zero, and for which the 
series^tn {see (7)) converges absolutely, has the following proper­
ties. 

(a) The sequence of even convergents represents a meromorphic 
function F{z), and converges uniformly over every closed region R 
containing no poles of F{z). 

(b) Set kn = V(a*nkn-i), pn = (kn —l)/t2n+i. Let Rf be an ar-

* Perron, Die Lehre von den Kettenbrüchen, 1st éd., pp. 345-346. 
t (3) is equivalent to (1) except for the factor z. 
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bitrary closed bounded region containing none of the poles of F(z), 
and containing no limit points of the sequence {pn}, within or upon 
the boundary. Then the sequence of odd convergents converges uni-
formly over Rf to F(z). 

(c) At an isolated limit point pof {pn}, not a pole of F(z), the 
sequence of odd convergents converges to F(p) if for every infinite 
sequence pni, pn2, pn%, • • • converging to p, the sequence qUm 
= pnmt2nmp/(pnm — p)j (ra = l, 2, 3, - - '), does not have the limit 
point — 1. 

(d) If {pn} has more than one limit point, and if the sequence 
of odd convergents converges for a value of z, it must converge to 
F(z). 

PROOF OF (a). By (9) and the last two equations (6) it will 
be seen that the 2nth convergent of (3) is identical with 
c — (Ntn+i/Diln+i). Hence, under the hypothesis of the theorem, 
it follows by the lemma that the sequence of even convergents 
of (3) converges uniformly over R to the meromorphic limit 
F(z)^c-f(z). 

PROOF OF (b). By (9) and the first two equations (6) the 
(In — l ) th convergent of (3) is equal to 

WW» - M n+1 

B2n-~1 W 2 „ — D2 w+i 

This may be written in the form 

/A^ A2n-1 pnNJn - zN2'n-l 
(10) C = C - ~ ; 

B2n-1 pnF>2n — zD2'n-l 

From (10) and the lemma it readily follows that the sequence 
of odd convergents of (3) converges uniformly over R' to F(z). 

PROOF OF (C). Equation (10) may be written in the form 

A 2n-l N/n-1 + qnN2'n-2 
(11) C = C ; 

B2n-\ D2n-i + qnD2n_2 

where qn = pnt2npI'(pn — P) when z = p. Since p is an isolated limit 
point of the sequence {pn}, not a pole of F(z), it follows from 
(10) as in the proof of (b) that any infinite sequence of odd 
convergents corresponding to values of n for which {pn} has 
not the limit point p must converge to F(p) dXz — p. Again, if 
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pnu pns, pnt> - • • is a sub-sequence of {pn} converging to p, 
and, as supposed, the sequence gWm, (m = 1, 2, 3, • • •)> does not 
have the limit point — 1, it readily follows from (11) and the 
lemma that the corresponding sequence (11) converges to F(p) 
at z = p. We may then conclude that the sequence of odd con­
vergents of (3) converges to F(p) at z = p. 

PROOF OF (d). Let the sequence of odd convergents converge 
for a certain value of z. Since, by hypothesis, {pn} has more than 
one limit point, it must have a limit point different from s, and 
there is an infinity of values of n for which | z — pn\ ^ ô > 0 . The 
sequence of odd convergents corresponding to these values of n 
must converge to F{z), and hence the sequence itself converges 
to F(z). 

The argument used in the proof of (a) is valid under the more 
general hypothesis lim /n = 0. Hence if lim tn = 0, whenever the 
continued fraction converges it must be a meromorphic func­
tion. Now when the bn are real and &2n&2n+i>0, or, what is the 
same thing, the an are real and a2n7

2£0, a2 n+i>0, Hamburger* 
showed that the sequence of odd convergents always converges 
uniformly over an arbitrary bounded closed region R exterior 
to the real axis; and if the limit, Fi(z), is not identical with 
F(z), then both F(z) and Fx(z) are meromorphic, non-rational 
functions of 1/z. Consequently if lim /n = 0, we must have 
F(z)zsFi(z), for otherwise F(z) would have an infinity of poles 
in the vicinity of the origin, which is impossible since it is a 
meromorphic function of z. We therefore have the following re­
sult. 

THEOREM 2. Let the an of (3)f be real and a2w+i>0, # 2 ^ 0 . 
Then if tn is defined as in (7), and lim tn = 0, the continued fraction 
represents a meromorphic function F{z), with poles lying on the 
real axis only. The continued fraction converges uniformly over an 
arbitrary closed bounded region exterior to the real axis. The se­
quence of even convergents converges uniformly over an arbitrary 
closed bounded region containing none of the poles of F(z) within 
or upon the boundary. 

* Hans Hamburger, Mathematische Annalen, vol. 82, pp. 120-164 and 
168-187. 

t (3) is equivalent to (1) except for the factor z in (3). The condition 
«2n+i>0, dteuT̂ O is equivalent to the condition &2n&2n+i>0. 
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3. Representation of a Meromorphic Function. We proceed to 
prove that a continued fraction (1) with real bn such that 
&2n&2n+i>0, may represent a meromorphic function of z when 
b\y &2, &3, • • • does not converge to 0. To construct such a 
continued fraction, let r, 5 be real and positive and r < 1, rs> 1, 
rzs ̂  1, and take &i = 1, and 

Z>4n = ( l / r ) ( l / ( f « * ) ) » / * , Ô4n+1 = K f / * ) " " , 

Ô4n+2 = CT t t( l / (^f))»/«, &4n+3 = « „ ( l / O W , 
where 

(7n = (1 - ^ ^ / [ ( l - s " + 2 ) s 2 ] , 5n = (1 -rw+2)sw+2/[(l-^+2)r2/], 
/ = (rs)1/2, (w = 0, 1, 2, • • • ). The continued fraction (1) with the 
above values of the bn is of the kind considered by Van Vleck. 
For &2n&2n+i>0, (w = 1, 2, 3, • • •)> and &i = l, it will be seen that 

. , (1/r if r3s = 1, 
lim sup J„ = 

I oo if r3^ < 1. 

If we substitute kz for z, bn for kbn, k>0, we will obtain a con­
tinued fraction of the same kind but for which lim sup | bn' | can 
be made any positive number by choosing k properly. 

To prove that the continued fraction represents a mero­
morphic function, we shall apply Theorem 1. Put bi = l/aL, 
bn = l/(an-i an)y (n = 2, 3, 4, • • • ), so that 

0>2n = (bifafo • ' • &2n-l)/(&2W>6 * * * &2n), ( » = 1, 2 , 3 , • • • ) . 

I find that if c = 1 / ( 1 - r ) , 

a4n+2 = c^2+3"(l - s"+*), (n = 0, 1, 2, • • • ) , 

a4« = ctn2+*n(l - r^OA 1 ^ 1 , (» = 1, 2, 3, • • • ) , 

h2n = V ( ^ 2 + 3 r i ) , **- l = ^ + 1 / ( ^ n 2 + 3 n ) , 

£2n - 1/(1 - f+ i ) , i ^ i = 1/(1 - *"+*), 

^2« = r"+H*/(l - ^ W + 1 ) , ^2n- l = S^H^1/[crn^{\ - S** 1 ) ] , 

/4n+l = 1 / ' " = fc+2, *4n+3 = 0 » $ 7 ' n , *4n+4 = * « / ( * V n ) , 

?2» = ô„_if*fe/{ [r(r8*)n/2 + (/-"+1 - l)z\s»+l) . 

Since lim /n = 0, Theorem 2 may be applied to prove that the 
continued fraction (3) represents a meromorphic function F(z) 
and converges uniformly over every closed bounded region ex­
terior to the real axis. This theorem gives us no information re-
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garding the convergence of the sequence of odd convergents for 
points on the real axis. We therefore turn to Theorem 1, which 
is applicable here inasmuch as ^tn converges absolutely. 

When rBs<ly the sequence {p2n} converges to 0, while 
{p2n+i} increases numerically to GO . Hence by (a) and (b) of The­
orem 1, the continued fraction (3) converges uniformly over an 
arbitrary bounded closed region R not containing the origin or a 
pole of F(z). Since q2n = p2nhnp/(p2n — p) = 0 when p = 0, so that 
{Q2n} does not have the limit point — 1, and since 0 is an iso­
lated limit point of {pn}, (c) of Theorem 1 is applicable at 0 = 0. 

When r*s = l, lim p2n = r, lim |̂ >2«+i| = °° ; and when p = r, 
lim g2n = 0. Hence in this case also the continued fraction (3) 
converges except at the poles of F(z). 

Now (1) and (3) are equivalent except for the factor z in (3). 
It follows that iî Zy^Oy (1) represents the meromorphic function 
H(z) = F(z)/z, and converges except at the poles (not 3 = 0) of 
H(z). I t will be seen that z = 0 is not a pole of H(z), but that 
H(0) =&i = l /a i . Since (1) converges to this limit when 2 = 0, it 
follows that the point 2 = 0 is not an exceptional point. 

When r 3 s < l , lim sup \bn\ = oo, and, by a theorem of Van 
Vleck,* the distance between the origin and the nearest root of 
Dn (the denominator of the nth. convergent of (1)) has no posi­
tive lower limit. I t is interesting to exhibit this fact directly for 
the continued fraction under consideration. By (9) and (6), it 
will be seen that the roots of Dén-i are the roots of 

(12) P2nDU- zD!n-i. 

Now this converges uniformly over a region containing the 
origin, and, since lim p2n = 0, its limit is — zv (z), a function which 
has a zero at the origin. We conclude that an arbitrarily small 
vicinity of the origin must contain a zero of (12), and hence of 
Atn-i, provided n is sufficiently large. 

When rzs = l, lim sup |&w| = 1 A , and, by this same theorem 
of Van Vleck, the roots of Dn cannot come within some mini­
mum distance d>0 of the origin. 

NORTHWESTERN UNIVERSITY 

* Transactions of this Society, vol. 4 (1903), p. 209. 


