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ON A COVARIANT D I F F E R E N T I A T I O N PROCESS: 
PAPER II* 

BY H. V. CRAIG 

1. Introduction. I t is the purpose of this note to construct 
analogs of the parameters gradient, divergence, and curl, and 
to establish a few of their more salient properties. 

2. Notation. In addition to the notation used in I,f we shall 
employ the symbols | , 6 to indicate ordinary covariant and 
Synge-Taylor differentiation, respectively. 

3. The Invariants. Evidently, if S(xt
 (m)) is a scalar, 

then the quantities S,a are the components of a vector. Like­
wise, if V°(x, x\ • • • , * ( m ) ) , Va (Va=f*pVP) are the contra-
variant and covariant descriptions of a vector, and Aap a second 
order tensor, then Va,a is a scalar, Va,p— Vp,a a skew symmetric 
tensor, and Aap,y+Aya,p-\-Apy)Cl a tensor of the third order. 
Furthermore, if n, the dimensionality of the space, is three, and 
€afiy represents the product of |/a^|~1/2 and the corresponding 
component of the contra variant e system, then e01^ V$,y is a 
vector. The symbols ea^y are skew symmetric in each pair of in­
dices and el2Z is unity. 

A certain regularity appears if m > 2 or if the affine connec­
tion is that of Riemannian geometry, for example, Va,p =fay Vy,p, 
and whenever either of these cases prevails we shall employ a 
special symbolism. Specifically, GS shall represent the vector 
S,a,D V the scalar F % , and if n is three, CV the vector e^y Vpty. 

In virtue of these definitions and the formal equivalence of 
certain of the rules of operation of our process and those of par­
tial differentiation, we may take over many of the identities of 
vector analysis; for example, 

CGS E= 0; DCV s 0; G(S + s) s GS + Gs; 

D(SV) E= (GS) • V + SDV; C(SV) s (GS) X V + SCV; etc. 

The first of these relationships suggests the following theorem. 

* Presented to the Society, March 25, 1932. 
t The preceding note, this Bulletin, vol. 37 (1931), p. 731. 
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THEOREM. A necessary and sufficient condition that a function s 
exist such that S,a= Va, is Va,B — V/j,a = 0. 

In proving the sufficiency of this condition (the necessity is 
obvious) we shall simplify the writing by restricting ourselves 
to the case m = 2. The cases m = 3, m>3 are somewhat simpler 
and may be treated as in the following demonstration. 

PROOF. Let us replace the given equations with the equivalent 
set of n homogeneous partial differential equations, 

Aa$ = 0, [Aa = 2<a\ h Va — X 
\ dx'« \ a j dx"° ds) 

in the dependent variable <3> and the 2n + l independent va­
riables xf', x", s. Obviously, these equations are independent. If, 
in addition, they are Jacobian complete, that is, if the alter­
nants 

/ (A)\ d$ d$ 

(^,)*--(..2{J)~+K,.-
V i a ) / oV'A ds 

vanish, then we may conclude that the set Aa$ = 0 has a solu­
tion,* such that $ = 0 may be solved for s. The function s so 
obtained is the required scalar. 

As a matter of fact, a demonstration that the sum — Aa2 {^} 
+Ap2{«} is zero is a part of the proof of the commutative 
property of the differentiation process,f and so (AaAp) <ï> reduces 
to ( V/3,«— Va,a) d$/ds, which vanishes by hypothesis. 

A second theorem,J which indicates a similarity between 
divergence dLndPAaBy,(PAapy=AaB,y+Aya,p+ABy a), and between 
curl and Va,p— Va,a may be stated as follows. 

THEOREM. If AaQ is a skew-symmetric tensor, then the necessary 
and sufficient condition that a covariant vector <£« exist, such that 

* See Goursat, Mathematical Analysis, vol. 2, translated by Hedrick and 
Dunkel, part 2, pp. 265-270; A. Cohen, The Lie Theory of One Parameter 
Groups, pp. 109-111. 

t See I, p. 733. 
{ See L. P. Eisenhart, Condition that a tensor be the curl of a vector, this 

Bulletin, vol. 28 (1922), p. 425. 
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is that 

(2) P,4a/37 = 0. 

PROOF. Let $ i and <E2 be two functions which satisfy the 
equation An — $1,2— $2,1. In virtue of (2) there is a function 
^(x, x', x", s), such that the equality 

dx'<* \ a ) dx"° ds 

holds, for the alternant in question reduces to PAm. Moreover, 
V(x, x', x", s) = 0, s = <£>3 define a function $3, which satisfies the 
required relations 4̂13 = $1,3 — $3,1; ^23 = $2,3 — $3,2. Evidently 
3>4, and other successive $ functions, may be found similarly. 

Finally, we note that if we transform 3>a as a covariant vector, 
then both (1) and (2) will be tensor equations and consequently 
valid in all coordinate systems. 

An additional characteristic of the invariant GS, somewhat 
analogous to a certain property of the gradient, namely, that 
the critical points of z(x, y) are determined by grad 2 = 0, is 
expressed by the following theorem. 

THEOREM. The equation G/(w)(x, x') = 0 determines the extremal 
curves associated with ffdt. 

PROOF. By differentiat ing/^, x') repeatedly with respect to 
the parameter and representing each time with R those terms 
which do not contribute to the corresponding G/(w), we have 

ƒ' = *'«ƒ,« + x"«fa; 

ƒ" = *""(ƒ*« + 2x'tfax0 + x^U) + x'"«fa + R; 

jim) = x(m)«[fxa + m(fay] + *(-H-i)«/a + R9 (m>2). 

Applying our process to the first of these and expanding, we 
obtain 

ƒ,7 = /*T + X'*f*y + X"*fay ~ 2/„/P" { *'« [78, P] + i*"'Apr } . 

But the followings relations hold: 

fofpr = x'ocf^fP'; X>Pfypr = 0 ; X'8x'p[fpsx7 + fypxt - fy8xf>] = 2 / r fJ 

and therefore ƒ ,7 is the Euler tensor, —fxv + (fy)'. Similarly, we 
find th<Hf^\y = m[-fxy+(fy)']. 
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A second application of the process reveals the fact that the 
covariant Euler tensor Ea is a constant with respect to our 
derivative, thus: 

Ea = x"yfay+ x'y%'*[yb,a]9 

Ea,0 = x"ifayfi + 2*'*[70, a] - 2/«,./*p(*/*[7j8, p] + Wyfrrf>) = 0 , 

while 

E«s « (/^JSy),/j = ƒ«*,/* £y = y ^ £ 7 = - f^UeE*. 

Incidentally, the tensor fay
z
fpEy appears in (0Ea),e also, for 

6Ea = (x"yfay)' + 2*"**/a[7«, a] + R 

- {x'^fay + x'yx"[yô, <r]}[x'"[fla, p] + \x"*f„p}f\ 

and consequently 

(flEa),fi = fa?' + X"yfayfi + 2 x , ô [ / 3 5 , a] - { * '" [« /* , 0 ] + * * " * ƒ « * } 

- JJEP/^P - 3 / W / ^ { ^ [ J 8 M , P] + **"'ƒ*,} 

also 

Obviously whenever the components of a tensor do not in­
volve x", we may make our derivative applicable by first ap­
plying the 6 process. To illustrate, suppose that we have given 
Sx<*> the gradient of a scalar point function, and let us confine 
ourselves to Riemannian geometry—the 6 process in this case 
reduces to Levi-Civita's derivative. Thus, by differentiating 
and employing the relationships dxfy = Ey\ £>,0 = O, we find 

& S > = x'ySa*\y; 62Sxa = (Bx^S ^\y + x'yx'ôSx«\y\j>; 

(62Sx<x)tp = 2 x'yS x<* i y ||S = 2x'yS xy\a\p> 

Finally, it is interesting to note that the curl of 025*« in­
volves the Riemann-Christoffel tensor, thus 

(02S£«),p - (0W«0),« = 2x'ySx6Ryap. 
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