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ON A COVARIANT DIFFERENTIATION PROCESS:
PAPER II*

BY H. V. CRAIG

1. Introduction. It is the purpose of this note to construct
analogs of the parameters gradient, divergence, and curl, and
to establish a few of their more salient properties.

2. Notation. In addition to the notation used in I, we shall
employ the symbols |, 0 to indicate ordinary covariant and
Synge-Taylor differentiation, respectively.

3. The Invariants. Evidently, if S(x, x’, - - -, x(™) is a scalar,
then the quantities S,, are the components of a vector. Like-
wise, if Ve(x, x/, - - -, x™), Vo (Vo=fsV®) are the contra-
variant and covariant descriptions of a vector, and 4.s a second
order tensor, then Ve, is a scalar, Vi, 5— Vs, a skew symmetric
tensor, and Aus,y+Ayas+Asy.« a tensor of the third order.
Furthermore, if #, the dimensionality of the space, is three, and
€7 represents the product of | faﬁl—1/2 and the corresponding
component of the contravariant e system, then e¥ V3, is a
vector. The symbols e*#7 are skew symmetric in each pair of in-
dices and e!2? is unity.

A certain regularity appears if m >2 or if the affine connec-
tion is that of Riemannian geometry, for example, Vi, g=fey V7 5,
and whenever either of these cases prevails we shall employ a
special symbolism. Specifically, GS shall represent the vector
S.«, DV the scalar V2 ,, and if % is three, CV the vector e#" V3 ,.

In virtue of these definitions and the formal equivalence of
certain of the rules of operation of our process and those of par-
tial differentiation, we may take over many of the identities of
vector analysis; for example,

CGS=0; DCV=0; GS+s) =GS+GCs;
D(SV) = (GS)-V + SDV; C(SV) = (GS) X V + SCV; etc.

The first of these relationships suggests the following theorem.

* Presented to the Society, March 25, 1932.
t The preceding note, this Bulletin, vol. 37 (1931), p. 731.
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THEOREM. A necessary and sufficient condition that a function s
exist such that S,o=Vq, 1s Vapg— Vg,a=0.

In proving the sufficiency of this condition (the necessity is
obvious) we shall simplify the writing by restricting ourselves
to the case m =2. The cases m =3, m >3 are somewhat simpler
and may be treated as in the following demonstration.

ProoF. Let us replace the given equations with the equivalent
set of » homogeneous partial differential equations,

i) o i) I¢]
AP =0, (4. = —2{ } +Va—>,
dx' a) 9x'’ as

in the dependent variable ® and the 2#41 independent va-
riables x’, x’’, s. Obviously, these equations are independent. If,
in addition, they are Jacobian complete, that is, if the alter-

ailp - a 3 9 1A I Iﬂ,a

+<A2{A}> 02 0%
Vaf)oxmn "% a5

vanish, then we may conclude that the set 4.® =0 has a solu-
tion,* such that ® =0 may be solved for s. The function s so
obtained is the required scalar.

As a matter of fact, a demonstration that the sum —A4,2{4}
+A52{4} is zero is a part of the proof of the commutative
property of the differentiation process,t and so (4.4s) ® reduces
to (Vg,a— V) 9®/0s, which vanishes by hypothesis.

A second theorem,} which indicates a similarity between
divergence and P4 .5, (PAssy=Aup v+ A e s+ Ay o), and between
curl and V, s— Vs, may be stated as follows.

THEOREM. If A.p is a skew-symmetric tensor, then the necessary
and sufficient condition that a covariant vector ®, exist, such that

* See Goursat, Mathematical Analysis, vol. 2, translated by Hedrick and
Dunkel, part 2, pp. 265-270; A. Cohen, The Lie Theory of One Parameter
Groups, pp. 109-111.

t See I, p. 733.

{ See L. P. Eisenhart, Condition that a tensor be the curl of a vector, this
Bulletin, vol. 28 (1922), p. 425.
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(1) Aag = Pag — P4,
is that
(2) PAaB'y = 0.

Proor. Let ®; and &, be two functions which satisfy the
equation A= P;2— P, 1. In virtue of (2) there is a function
Y(x, x’,x'’, s), such that the equality

liA\ T o ov
o~ o B A om0 @m0,
holds, for the alternant in question reduces to PA13. Moreover,
W(x,x’, %", s) =0, s=P; define a function ®;, which satisfies the
required relations A13=®; 53— P3,1; Aoz= P2 3— P3 2. Evidently
®,, and other successive ® functions, may be found similarly.

Finally, we note that if we transform &, as a covariant vector,
then both (1) and (2) will be tensor equations and consequently
valid in all coordinate systems.

An additional characteristic of the invariant GS, somewhat
analogous to a certain property of the gradient, namely, that
the critical points of z(x, y) are determined by grad z=0, is
expressed by the following theorem.

THEOREM. The equation Gf'™ (x, x') =0 determines the extremal
curves associated with [fdt.

Proor. By differentiating f(x, x’) repeatedly with respect to
the parameter and representing each time with R those terms
which do not contribute to the corresponding Gf™, we have

I = & fe e
f” = x”“(fza -+ 2x’f"fazﬂ + x"ﬂfaﬁ) + x,”afa + R;
fom = x(m)a[fza + m(fa)'] + xOmtbaf, 4 R, (m > 2).

Applying our process to the first of these and expanding, we
obtain

J o= Jo+ ' fany + 5"y = 2fufor {58[18, p] + F2" fror}
But the followings relations hold:
fafﬂr = x/afmfpa’. x,pf‘mf = 0; xrsx'p[fpa;ﬂ 'f‘f'yp::a - f755p] = Zfz-,;

and therefore f' , is the Euler tensor, —f;y+ (f,)’. Similarly, we
find that f™ ,=m[—fo+(f))’].
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A second application of the process reveals the fact that the
covariant Euler tensor E, is a constant with respect to our
derivative, thus:

Ey = &"f0y + &"72"[y8, ],
Eop = 8" fays + 206'7[B, @] — 2fucf(x'7[v8, 0] + §4"7f,06) =0,
while
Bep = (f7Ey) p = 7 Ey = foEy = — f*1],3EP.
Incidentally, the tensor f*v..8E., appears in (0E.) s also, for
0F, = (&"fuy) + 22748 [16, ] + R
— {&" oy + #1018, o]} {#" [ner, o] + 38" furo} 177

and consequently

(OE.) 5 = fos' + &' furs + 22/(85, 0] — { " [an, B] 4 35" "furs}
— 3Erfug, — 3fuef?{ 2" [Bu, p] + 32" fors}
= — 1E¢fogy = 3fuBEofur;
also
(0E=)5 = [8(f*7Ey)] s = f27(0Ey) .5 = — 3Erfyarfe? = 3Ef" up.

Obviously whenever the components of a tensor do not in-
volve x’/, we may make our derivative applicable by first ap-
plying the 0 process. To illustrate, suppose that we have given
Sze, the gradient of a scalar point function, and let us confine
ourselves to Riemannian geometry—the 6 process in this case
reduces to Levi-Civita’s derivative. Thus, by differentiating
and employing the relationships 0x'*=Ev; Ev3=0, we find

OSJ:“ = x,‘VSan; 02Sxa = (0x/7)Sz"‘|'y + xlnyBSza”N;
(0251“),5 = 2xl7SxaHm = 2x,7Sz71a|ﬁ-

Finally, it is interesting to note that the curl of 6%2S,a in-
volves the Riemann-Christoffel tensor, thus

(025 22) 5 — (635 48) .o = 22/7S 3 Roas.
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