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CONVERGENCE FACTORS FOR DOUBLE SERIES*
BY W. H. DURFEE

1. Introduction. By a theorem due originally to Frobeniust if
the power series y(z) =2 ;~oa:z has the unit circle as circle of
convergence, and if ;- oa; is summable by Cesaro’s first mean
with the value s, then lim y(2)=s as z2—-1 along any path
lying between two fixed chords intersecting at z=-+41. This
theorem has been considerably extended, in the field of double
series notably by Bromwich and Hardy,} and by C. N. Moore.§
The former proved that if f(x, y) =2 ij-oasxiy?, and if | S®|,
the kth Holder mean of ) a;;, is bounded for all values of 7 and 7,
and lim;, ;. Sg‘) =y, then also lim,,,.1 f(x, y) =s. More particu-
lar reference will presently be made to Moore’s paper, his the-
orems being the starting point for the present article. Robison,||
also, has given necessary and sufficient conditions for the
regularity of a transformation applied to a double sequence.

The writer, in a paper on series of the form y(z) =2 i=oa:s’?,
gave sufficient conditions on f(z) so that lim,.; y(2) =s.§ The
present paper deals with double series of the type

] ]
J(z, w) = D D aid Dwe,

=1 j=1

where 2, w are complex variables, and f(z), g(j) are logarithmico-
exponential functions,** called for brevity L-functions. Sufficient
conditions on f(z), g(j) will be given so that if D_a; is summable
(C, r—1) with the value s, then J(z, w) will be convergent for
I Zl <1, Iw] <1, and lim;,uwy.qa,1y J(3, w)=s.

* Presented to the Society, April 8, 1932.

t Journal fiir Mathematik, vol. 89 (1880), p. 262.

1 Proceedings of the London Mathematical Society, (2), vol. 2 (1904),
p. 161.

§ Transactions of this Society, vol. 29 (1927), p. 227.

|| Transactions of this Society, vol. 28 (1926), p. 50.

9] American Journal of Mathematics, vol. 53 (1931), p. 817.

** Hardy, Orders of Infinity.
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2. Notation. We shall employ Moore'’s notation. Thus

my My

(1) Smymy = Z Zawa

=1 7=1
(% my M2 F(k + my — ’L) F(k + me — ])
(2) Sml)mz = Z Z . : . Sijy
o= D(k) T(my—i+1) T(k)-T(my—j+1)
3) A(k) _ T(my + k) ' T(my + k) )
" Pk 4 1)-T(my) T(k + 1)-T(ms)
If the quotient S¥ ,,,/Aﬁ,’fl),,,2 approaches a limit s as m, ms become
infinite, we say that the series Y a;; is summable (C, k) with
the value s. We shall also have occasion to employ the fol-
lowing notation:

4) dii(z, w) = F Do,

(p,q) ap+q¢”(z’ w)
5) ¢ Uz, w) = —— 2~
®) o diraje
v
6) Andisle, w) = 3 D (— Doi(— m( )( )¢z~+s,.f+s,<z,w>,
§1=0 s92=0 2

(7) Aois(z, w) = Z(—m( )m,.,-(z, w).

§;=0

The region within which |z| <1, |w| <1, will be denoted by
E(z, w), and the open region in the neighborhood of (1, 1) lying
between two chords of the unit circle intersecting at 41, by
E’'(z,w).

THEOREM. If ) a;;is summable (C, r — 1) with the value s, when
r=11s an integer, and if
(a) |S§§—l)/A,-(j'"1)l <C, (4,j=1,2, - - ; Ca constant);
(b) f(t), g(t) are L-functions which, together with their first

(r —1) derivatives, exist and are continuous, are of constant sign,
and are monotonic for t = 1;

() logt = o[f(t)], log t = o[g(®)];
(d) f@) = a(#*), g(t) = o(2*) for some o > 0;
then the double series J(z, w) =9 11D 113! DwdD will converge

wn E(z, w), and lim¢ vy.a,1 J(2, w)=s, the paths of approach
lying in E' (2, w).
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3. Statement of Lemmas. For the sake of brevity the following
lemmas are stated here without proof.*

LemMmA 1. 4s (2, w)—(1, 1) in E'(z, w), ]Iog z| O|log p],
[log w| =0(log 7), where p=|z|, 7=|w|.

LemMA 2. If k() satisfies conditions (c) and (d) of the T'heorem,
then for k=1, h®(t)/h(t) = O(1/t*), and h® (£)/h' () =0(1/t+1).

4. General Relations. Each term T[¢% P (p,7)] of ¢ ?(p,7) is
of the form

® By re T[] 1« () P(log p)*(log ),
A=1 o=1

where B, is a constant, a=) . _ax, p=2 » A, B=2 .8
g=23=10[3,, and any, or all but one, of ay or 8, may be zero. It
will be noted that p=«, ¢=5. By Lemma 2 we have

HO) g(]) [f(t)] [g(])] |10g

) |T[¢(p 9)(p’ T)]I = By i plal IOgT|ﬂ,
(10) | 7[6%° (6, ]| = Bsp® ‘””[f(?p]_agi_(j)] [logp|=|logr |2.

By Lemma 1, in E'(3, w), |¢? (3, w)| < Bl ?(p, r)l ; SO
thatif we denote by Y Tff ") (p,7) the sumof all terms of d)“’ "D(p, T)
whose signs are unlike that of p/M7v@[f(4) log p|?[g() log 79,
the leading term, we have

1) 2= (= 0'(= D'Boi; ", 1) — 2 2T (e, D},
where &= |¢,-j’4)(z, w)[. From (6) and (11) we obtain

1 1
| Anii(z, w)| < By f % f TR
0 0

1
(12) f d&f (om0, 7) — 2 2T (o, 7) } dns,
0 0

where p=i+&+ - - - +&, v=44+m+ - - - +u. By (9), since
1=, pf®Zpf@D ) f(u) = f(4+7), with similar inequalities for j and
», we have for fixed (z, w), if we set M= | Anii(z, )|,

* The proof of Lemma 1 may be found in my paper cited above; Lemma 2
may be deduced from certain remarks by Hardy, in his Orders of Infinity.
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Bsf d&fdm'- f dsrfpﬂ - [f(u)iu[ Q) i,

G+ n]leG+ N
,ir]‘r '
It can be shown easily that if e, b are positive constants

(14) lim p/O[f(i + )P = lim 17D [¢(j + @) ] =

(13)
< Byp/ (0790

ise0 Jo
whence
lim | Arr¢u(z’ 'w>l = hm | Arrd)ij(z’ w)|
1;]—'°° e
15
( ) = lim lArrd’if(z) w)l = 0.
joro

5. Proof of Theorem. C. N. Moore* has given necessary and
sufficient conditions that a double series Y a.;Fi;(z, w) shall
converge in E(z, w) and approach a limit s as (z, w)—(1, 1) in
E'(z, w), the series ) a; being summable (C, r—1) with the
value s, and condition (a) of the Theorem being satisfied. For
series of our type, D iey O ;e10:2" P, these conditions are:

(A) 25 204t Aniiz, w) | < K(z, w), (E(z, w));
i=1 j=1

(Bl) lim ]‘r—l iir—ll Arquij(Z, W)I = 0’ (E(Z; w); p = 1) 2’ t ');
Joe =1

(By) lim 77— 12]’ 1| Aorii (2, 'w)l =0, (E(z,w);q=1,2,-);
i—o0 j=1

(©) i gui(s, w) | < Mz, w), (B, w);id,j = 1,2, );

(A 20 2001t Az, w) | < K, (E'(z, w));
=1 j=1

(Dl) lim Z]r—_ll Arr¢w(z; w)' = 0, (i, q = L2 );

(z, w)=(1,1)  j—,

(Dy) lim Ei’—ll Andii(z, w)| = 0, (p,j=1,2,---);
(2, w)=(1,1)  j—p
(E) lim  ¢i(z, w) = 1, Gyf=1,2,---);

(z, W), 1)

* Loc. cit.
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where K (z, w) and M (z, w) are finite for each (z, w) in E(z, w),
and K is a positive constant. We proceed to show that these
eight conditions are fulfilled in the present case.

ConbpITiOoN (A). By (12), since 1=, j=v,

) Y] 1 1
S St st 0| < BEX [ e [ine
0 0

=1 j=1 =1 j=1

(16)

1 1

(r,r) (r,r)

dgrf I-/'r_l"r—l{qsuv (P; ) — 2 ETM (P; 7) }d"lr'
0 0

Considering first that part of this integrand involving ¢%;"”, and

integrating by parts with respect to 7, and then with respect to

£., we obtain

1 1 1 1
@)
BT [ o [a [ wmel o an
0 0 0 0

=1 j=1
@

(17) =B, 2 2 {G(i,/) = GG+ 1,/) = G(i,j + 1)
+ GG + 1,7 + D,

where . . . .
Wﬁ=f%deHf%4 Z &—m—w
(18) 0 0 0

(f - l)l (1’ - 1)! r—l—g r—l—t (r—1l—s,r—1—t)
. (1' —-1-— 5)' (7’ -1 t)’uo Vo ¢"°p° (py T)d"lr—l,

in which expression wo=i+&4 - - - +&_1, and vo=j+m
+ - -+ +n,_1. By the aid of (9) we find

GG, ) = er—n‘fdafdm
COIR [ B S ) e ) e

8=0 t=0
< Bo(rD) e [f(i 4 7 — 1)-g(G+ 7 — D],

This expression, by virtue of (14), approaches zero when 2, or j,
or both, increase indefinitely; so that

By 3 2AGG, /) =G+ 1,/) = G(i,j+ 1) +G(i + 1,7 + 1)}

(20) = BG(1, 1) £ Ba(r)?/ D@ [f(r)-g(n)].
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Thus (17) is bounded for fixed z and w.
Returning now to the remaining part of the integrand in (16),
we have, by (10), for each term

1 1

2342 Z dEl fdm fdérf —u T (o, ),

(21) = ‘1’ °1

<Yy delfdmm
0 0

=1 j=1

1 1
' f ds,f Bauef=1pf 0o () |2 [¢'(0) ]| log p |« |log 7 |#dn..
0 0

This integrand is, except for a constant factor, the leading term
of p“"‘v"’%fﬁ’ f(p, 7). Now T,(,f,’ " (p, 7), being negative, cannot
be the leading term of q&,(f; " hence ¢,(,°," # is of lower order than

,(f,,' N, and may be substituted for T,(f,,' ”. We now set up a new

expression, like (16) but with qsfﬁ’ﬂ) in place of ¢>(' 7 and
sufficient repetition of this process must eventually lead, by
(20), to

0 @ 1 1
22) B3 dslf dny - -
0 0

=1 j=1
1
(1,1) fay g
f dgrf d)vm (p: T)d"’r = P T .
0 0

We have, therefore,

(23) Z Zt" 7 Anbi (2, w) | <Buo(r)2e! V7o [(r)-g(r) ],

i=1 j=1

which proves that condition (A) is satisfied. By an entirely
similar procedure we find that

T—l er—ll Arod)n(z: 'ZJZ)) ‘

= Buj™! ;f dflfd& fdg,_f r—1

{ (r,0)

b (0, 1) — 2 215" (o, )
< Bigj =1 (r!),rg(j){pf(v+1)[f(1§ + r)]r—l — W [f(r)]r-—l}.

(24)
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By (14) lim,., o/ @V [f(p+7)]~1=0, so that the expression
within the braces is bounded for p=1; and since, by condition
(c) of the Theorem, lim;., 77177 =0, we have

lim ]r—l er 1l Ar0¢17(za w)] = O (E(Z; ‘ZU), p= 1; 27 te )'
jow i=1
Condition (B;) is therefore satisfied. The argument for (B.) is,
of course, precisely similar.

Proceeding to condition (C), we note that by condition (c)
of the Theorem, for an assigned € >0 there exist 7y, jo, such that
for >4y, log 7 <ef(4), and for j>j, log j<eg(j). By choosing e
less than both |log p|/(r—1), and |log 7|/(r—1) we have, for
such 7 and j, e(r —1)f(3) <f(3) | log p] e(r—1)g(h) <g(])ilog 1']
and hence

ir—1 r—ll é:i(z, w)] = §rlr=lpf oD

(25) ; eois
< e(r=D{logi—ef (D)} . g(r—D){logi—eg (N} < 1,

Condition (C) is therefore satisfied.

In condition (A), the bound K(z, w) depends upon z and w,
for the constant B in (23) depends upon log p and log 7. We
now further define E’(z, w) as follows. For a given L, 0<L <1,
let all values of (z, w) in E’(2, w) be such that Ilog pl = |log LI ,
|log 7| <|log L|. If we now set By; equal to the value of By
corresponding to p=7=L, we have, for all (z, w) in E’(z, w),

260 T Tiryrt| Ausils, w)| < B0 g) ] =K

Thus condition (A’) is satisfied.
For condition (D;) we have by (6), for fixed ¢,

(27 er—l] Arr'd’i](z; w) |
= 5| £ Sense0n (D) (D)ot 0|
i=q 81=0  89=0 2
= Z(“l)“‘< )zf<i+sl> >t Z(—l)sa( >wa(i+sz) .
8;=0 i=q 39=0

The first part of this expression is the sum of (r+41) terms, each
a continuous function of z; whence


lim.p_.oo
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(28) 11m Z(_ 1)sl< )z/(i+s,)l =0.

8;=0

Next, if 270, we have by (7),

Z( — 1)%( )wa<:'+s2)

89=0

(29) 22
i=q

1

= —P—f(_')— ZJT_1| Apoi(z, w) |
j=

By a procedure similar to that followed for (B;) we now find

@)~ Tt dubile, )| < Bulhrr@lglg +r = D],

This is bounded for 7 <1, and fixed ¢. Therefore

(31) Z]’_ll Andii(z, w)| =0,

(z, w)—»(l 1
and condition (D,) is satisfied. The argument for (D,) is exactly
similar.

Finally, for condition (E) we have

(32) $ij(z, w) = lim o/ @po@ =1,

(z, w)—»(l 1) (z,w)—(1,1)

and this completes the proof of the Theorem.

It will be noted that condition (c), log t =a [f(£) ], etc., is neces-
sitated by Moore’s condition (C), if“lj"ll ¢ii(z, w)l <M(z, w).
It insures the convergence of the series J(z, w). If, how-
ever, a suitable restriction be placed upon $m,m, namely,
Smym,=O0[Nm)+e(n2) ] for every A>1, condition (c) may be
omitted. We may then have f(¢) =log ¢, g(¢) =log ¢, or even more
slowly increasing functions. The proof, however, is somewhat
long. It will be observed that the Theorem can be extended in
an obvious way to multiple series of order #.
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