ON THE REDUCTION OF A MATRIX TO ITS RATIONAL CANONICAL FORM*

BY M. H. INGRAHAM
Two square $n \times n$ matrices A and B with elements in a field F are similar in F if there exists a non-singular $n \times n$ matrix with elements in F such that $S^{-1} A S=B$. In the study of similarity canonical forms play a fundamental role. The classical canonical form for A is one in which the elementary divisors of $A-\lambda I$ are brought into prominence. In 1926, Dickson published in his Modern Algebraic Theories a rational discussion of the problem of similarity in which a rational canonical form based on the invariant factors of ($A-\lambda I$) was used. Other discussions by Lattés, Krull, Kowalewski, and Menge have been published.

The following seems to be, from the algebraic standpoint, a somewhat more direct discussion than others known to the author. Moreover, in arriving at the well known rational canonical form for a matrix, certain lemmas of interest are developed.

Throughout we consider all elements of matrices and vectors and coefficients of polynomials that enter the discussion to be in a field F. All points of interest are met with if the elements involved are rational.

Consider an $n \times n$ matrix A. If the vectors $\xi_{1}, \xi_{2}, \cdots, \xi_{p}$ are $n \times 1$ matrices, we define $L\left(\xi_{1}, \xi_{2}, \cdots, \xi_{p}\right)$ to be the linear set consisting of all vectors of the form $\sum_{1}^{p} g_{i}(A) \xi_{i}$, where the g 's are polynomials.

If L is such a linear set and if g is a polynomial and η an $n \times 1$ vector, we say that $g(A) \eta \equiv 0 \bmod L$, where 0 stands for the zero vector if $g(A) \eta$ is in L.

If $g_{1}(A) \eta \equiv 0 \bmod L$, and $g_{2}(A) \eta \equiv 0 \bmod L$, then for every pair of polynomials p_{1}, p_{2},

$$
\left\{p_{1}(A) g_{1}(A)+p_{2}(A) g_{2}(A)\right\} \eta \equiv 0 \bmod L .
$$

Since the greatest common divisor of g_{1} and g_{2} is expressible in the form $p_{1} g_{1}+p_{2} g_{2}$, one can prove (as in the proof for the existence of a minimum equation for a matrix) that for each

[^0]$n \times 1$ vector η and linear set L there exists a polynomial g of lowest degree and leading coefficient unity such that $g(A) \eta \equiv 0$ $\bmod L$. In fact any other polynomial satisfying this congruence will be divisible by g. The polynomial g is called the minimum function of A relative to (η, L).

If g_{1} and g_{2} are polynomials, then there exist polynomials f_{1}, f_{2}, h_{1}, and h_{2} such that $g_{1}=f_{1} h_{1}, g_{2}=f_{2} h_{2}$, where f_{1} and f_{2} are relatively prime and $f_{1} f_{2}$ is the least common multiple of g_{1} and g_{2}. This is readily seen, for if the factorizations of g_{1} and g_{2} into powers of distinct irreducible factors are given by
$g_{1}=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{s}^{m_{s}} q_{1}^{n_{1}} q_{2}^{n_{2}} \cdots q_{t}^{n_{t}}, g_{2}=p_{1}^{v_{1}} p_{2}^{v_{2}} \cdots p_{s}^{v_{s}} q_{1}^{u_{1}} q_{2}^{u_{2}} \cdots q_{t}^{u_{t}}$,
where $0<m_{i} \geqq v_{i} \geqq 0$ and $0 \leqq n_{i} \leqq u_{i}>0$, then $f_{1}=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{s}^{m_{s}}$ and $f_{2}=q_{1}{ }^{u_{1}} q_{2}{ }^{u_{2}} \cdots q_{t}{ }^{u_{t}}$ are effective. If g_{1} is the minimum function of A relative to $\left(\eta_{1}, L\right)$ and g_{2} is the minimum function of A relative to (η_{2}, L) and if $\eta=h_{1}(A) \eta_{1}+h_{2}(A) \eta_{2}$, then g, the minimum function of A relative to (η, L), is $f_{1} f_{2}$, the least common multiple of g_{1} and g_{2}. For we have

$$
g(A) \eta=g(A) h_{1}(A) \eta_{1}+g(A) h_{2}(A) \eta_{2} \equiv 0 \bmod L
$$

and hence

$$
f_{1}(A) g(A) h_{1}(A) \eta_{1}+f_{1}(A) g(A) h_{2}(A) \eta_{2} \equiv 0 \bmod L
$$

But $f_{1}(A) h_{1}(A) \eta_{1} \equiv 0 \bmod L$, and thus $f_{1}(A) g(A) h_{2}(A) \eta_{2} \equiv 0 \bmod L$, and $f_{1} g h_{2}$ is a multiple of g_{2} and hence g a multiple of f_{2}. Similarly, g is a multiple of f_{1} and since $f_{1}(A) f_{2}(A) \eta \equiv 0 \bmod L$, $g=f_{1} f_{2}$. Hence if the minimum function of A relative to (η_{1}, L) is g_{1} and if there exists another vector η_{2} for which the minimum function of A relative to $\left(\eta_{2}, L\right)$ is g_{2}, where g_{2} does not divide g_{1}, there exists a third vector η_{3} such that the minimum function of A relative to $\left(\eta_{3}, L\right)$ is of higher degree than either g_{1} or g_{2}. As the degree of any such minimum function can not exceed n, there exists a vector η such that g, the minimum function of A relative to (η, L), is divisible by the minimum function of A relative to (η_{1}, L), where η_{1} is any arbitrary vector. Such an η is said to be maximal relative to (A, L) and g is called the minimum function of A relative to L. This process of finding the maximal η corresponds to the finding of the leader of a chain of maximal length at various stages in Dickson's discussion. The
present method, however, gives a mode of construction for this leader.

It is readily seen that if L_{1} is contained in L_{2}, then for any vector η the minimum function of A relative to any vector (η, L_{2}) is a divisor of the minimum function of A relative to (η, L_{1}), and that the minimum function of A relative to L_{2} is a divisor of the minimum function of A relative to L_{1}.

Consider a set of vectors $\xi_{1}, \xi_{2}, \cdots, \xi_{p}$. Let $L_{0}=0, L_{1}=L\left(\xi_{1}\right)$, $L_{j}=L\left(\xi_{1}, \cdots, \xi_{j}\right)$. Let ξ_{1} be maximal relative to $\left(A, L_{0}\right), \xi_{2}$ maximal relative to $\left(A, L_{1}\right)$, and, in general, ξ_{j} maximal relative to $\left(A, L_{j-1}\right)$. If L_{p} is not the complete vector space, there exists a vector η not in L_{p} which is maximal relative to $\left(A, L_{p}\right)$. Let g_{i} be the minimum function of A relative to L_{i-1}. From the preceding paragraph g_{i-1} is divisible by g_{i} for each i; hence a set of polynomials k_{i} exists, such that $g_{i}=k_{i} g_{p+1},(i<p+1)$. Since $g_{p+1}(A) \eta \equiv 0 \bmod L_{p}$, there exist a set of polynomials of f_{i} such that

$$
g_{p+1}(A) \eta=\sum_{1}^{p} f_{i}(A) \xi_{i}
$$

Moreover, each f_{i} is divisible by g_{p+1}, for if this were not the case there would be a last number l less than or equal to p for which f_{l} is not divisible by g_{p+1}. But if j is greater than $l, k_{l} f_{j}$ is a multiple of g_{l} since f_{j} is assumed to be a multiple of g_{p+1}; hence $k_{l}(A) f_{i}(A) \xi_{i} \equiv 0 \bmod L_{l-1}$ whenever $i \neq l$. Since $k_{l}(A) g_{p+1}(A) \eta$ $=g_{l}(A) \eta \equiv 0 \bmod L_{l-1}$, it follows from the last remark that

$$
k_{l}(A) f_{l}(A) \xi_{l} \equiv 0 \bmod L_{l-1},
$$

but since ξ_{l} is maximal relative to $\left(A, L_{l-1}\right), k_{l} f_{l}$ must be a multiple of $g_{l}=k_{l} g_{p+1}$ and hence f_{l} must be a multiple of g_{p+1} in contradiction to our hypothesis. Hence, if $f_{i}=r_{i} g_{p+1}$ and if we let

$$
\xi_{p+1}=\eta-\sum_{1}^{p} r_{i}(A) \xi_{i}
$$

it follows that $g_{p+1}(A) \xi_{p+1}=0$ and hence ξ_{p+1}, which is maximal relative to L_{p}, is such that A has g_{p+1} for its minimum function relative to (ξ_{p+1}, L_{0}) as well as relative to (ξ_{p+1}, L_{p}). Hence we may find a set of vectors ξ_{1}, \cdots, ξ_{t} with the properties:
(1) Each ξ_{i} is maximal relative to $L\left(\xi_{1}, \cdots, \xi_{i-1}\right)$.
(2) If g_{i} is the minimum function of A relative to $\left(\xi_{i}, L\left(\xi_{1}, \cdots, \xi_{i-1}\right)\right)$, then $g_{i}(A) \xi_{i}=0$.
(3) $L\left(\xi_{1}, \cdots, \xi_{t}\right)$ is the total vector space.
(4) Each ξ_{i} is different from the zero vector.

Let $g_{i}(\lambda)=-\sum_{1}^{n i-1} b_{i j} \lambda^{j}+\lambda^{n_{i}}$. Consider the $n \times n$ matrix, S, whose columns are the linearly independent vectors $\xi_{1}, A \xi_{1}, \cdots, A^{n_{1}-1} \xi_{1}, \xi_{2}, A \xi_{2}, \cdots, A^{n_{2}-1} \xi_{2}, \cdots, A^{n_{t}-1} \xi_{t}$. If the rows of S^{-1} are the $1 \times n$ vectors $\zeta_{1}{ }^{\prime}, \cdots, \zeta_{n}{ }^{\prime}$, these vectors form with the rows of the transpose of S a biorthogonal system. The columns of $A S$ are

$$
A \xi_{1}, A^{2} \xi_{1}, \cdots, A^{n_{1}-1} \xi_{1}, \sum_{0}^{n_{1}-1} b_{i j} A^{i \xi_{1}}, A \xi_{2}, \cdots, \sum_{0}^{n_{t}-1} b_{t j} A^{i \xi_{t}}
$$

and
$\zeta_{1}{ }^{\prime} A \xi_{1}=0, \zeta_{1}{ }^{\prime} A^{2} \xi_{1}=0, \cdots, \zeta_{1}^{\prime} \sum_{0}^{n_{1}-1} b_{i j} A^{j} \xi_{1}=b_{10}, \zeta_{1}{ }^{\prime} A \xi_{2}=0, \cdots$,
$\zeta_{2}{ }^{\prime} A \xi_{1}=1, \zeta_{2}{ }^{\prime} A^{2} \xi_{1}=0, \cdots, \zeta_{2}{ }^{\prime} \sum_{0}^{n_{1}-1} b_{i j} A^{i} \xi_{1}=b_{11}, \zeta_{2}{ }^{\prime} A \xi_{2}=0, \cdots$,
which are the elements of $S^{-1} A S$, and hence $S^{-1} A S$ is 0 except for $n_{i} \times n_{i}$ blocks along the main diagonal of the form
whose characteristic determinant is $g_{i}(\lambda)$, where each $g_{i}(\lambda)$ divides $g_{i-1}(\lambda)$, and hence $S^{-1} A S$ is the transpose of the rational canonical form given by Dickson.

The uniqueness of this canonical form may be established as usual through the invariance of the greatest common divisors of the determinants of the $(n-r)$-rowed minors of $A-\lambda I$, or as follows. Since $g\left(S^{-1} A S\right)=S^{-1} g(A) S$, the rank of a polynomial in A and the rank of the same polynomial in any matrix similar to A are identical. Consider two distinct $n \times n$ matrices A_{1} and A_{2} in canonical form with the characteristic functions of the i th blocks $g_{1 i}$ and $g_{2 i}$, respectively; if $g_{1 i}=g_{2 i}$ for $i<k$ and $g_{1 k} \neq g_{2 k}$; then if $g_{1 k}$ is not divisible by $g_{2 k}, g_{2 k}\left(A_{2}\right)$ will have rank less than $g_{2 k}\left(A_{1}\right)$.

The University of Wisconsin

[^0]: * Presented to the Society, November 25, 1932.

