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SOLUTION OF HUNTINGTON'S "UNSOLVED 
PROBLEM IN BOOLEAN ALGEBRA" 

BY A. A. BENNETT 

The sixth set of postulates for Boolean algebra recently pro­
posed by E. V. Huntington* may, as he suggests, be modified so 
as to read as follows. Let 

K = an undefined class containing at least two elements, 
a,b,c, • • • ; 

r = an undefined subclass in K (so that if a is in T, then a 
is in K) ; 

(a + b) = the result of an undefined binary operation ; and 
a' = the result of an undefined unary operation. 

POSTULATE 1.71. If a and b are in K, then (a+b) is in K. 
POSTULATE 1.7. If a is in K, then af is in K. 
POSTULATE 1.1. If a is in T and (a'+b) is in T, then b is in T. 
POSTULATE 1.2. If a is in K, then [(a+a)f+a] is in T. 
POSTULATE 1.3. If a, b, etc. are in K, then [bf + (a+b)] is in T. 
POSTULATE 1.4. If a, b, etc. are in K, then [(a+b)'+ (b+a)] is 

in T. 
POSTULATE 1.6. If a, 6, c, etc. are in K, then {(b'+c)' 

+ [(a+b)' + (a+c)]} is in T. 
POSTULATE 1.8. If (a'+b) is in T and (b'+a) is in T, then 

a = b. 

The "unsolved problem" he proposes is the question whether 
or not Postulate 1.1 is independent of the other postulates in this 
list. The purpose of the present paper is to answer this question 

* E. V. Huntington, New sets of independent postulates for the algebra of 
logic, with special reference to Whitehead and RusselVs Principia Mathematica, 
Transactions of this Society, vol. 35 (1933), pp. 274-304, especially p. 298. 
Huntington's sixth set, while inferior to his fourth set when regarded merely 
as a set of postulates for Boolean algebra, is of interest in connection with B. A. 
Bernstein's version of the primitive propositions of the Principia (see the 
bibliography in the paper cited). In connection with Huntington's fourth set, 
it should be noted tha t Postulate 4.5 is not independent; see the forthcoming 
number of the Transactions of this Society. 
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in the affirmative by constructing an actual example of a system 
(K, r , + , ') which satisfies all the other postulates of the list, 
but not Postulate 1.1. 

For this example, + is nonassociative but is such that 
I. If a is in K, then (a+a) =a, and II. If a and b are in K, then 
(a+b) = (b+a). The distinct elements of K are here countably 
infinite. Each has a unique rank equal to the sum of the mini­
mum number of signs, + , and ', required to represent the 
element. In particular there is a unique undefined element, e, 
of rank zero. To obtain all the distinct elements of rank, n, > 0 , 
one proceeds as follows by recursion. First, for each previously 
recorded element a of rank n — 1, write a'. Secondly, for each 
element a of rank r1 where (n/2) ^r<n, and for each element, &, 
of rank n — r— 1, write (a+&). Thirdly, if n is odd (say n — 
2m-\-l), for each element a of rank m (other than the last re­
corded element of rank m) and for each element b of rank m 
occurring subsequent to a in the recorded list, write (a + b). 
Thus ef is the only element of rank 1. The distinct elements of 
rank 2 a r e e " , (e' + e). Those of rank 3 are e'", (e' + e)', (en'+e), 
[(ef+e)+e]. Similarly for elements of higher rank. 

From the method of construction, it is evident that Postulate 
1.7 is satisfied, and that for a^b, Postulate 1.71 is satisfied. 
By virtue of I, II , this latter postulate holds also for a = b. 

The subclass T will be defined for this example as consisting 
exclusively of all elements of K e&ch of which is of one of the 
four following types, A-D : A, the unique element e; B, (a'+a) ; 
C, [b' + (a+b)]jorb^a;D, {(b'+c)' + [(a + b)' + (a+c)}}, for 
a, b, c, not all equal. It follows that Postulates 1.2, 1.3, 1.4, 1.6, 
are satisfied. Indeed Postulate 1.2 reduces by I to B. Postulate 
1.3 coincides with C if b^a, but for b = a, reduces by I to B. 
Postulate 1.4 reduces by II to a special case of B. Postulate 1.6 
coincides with D save for a = b = c, in which case by use of I it 
reduces to a special case of B. 

From the method of construction of the set of elements of the 
system one has the following theorem. 

I I I . If a and b are in K, then a~b if and only if a and b are 
reducible to identical form in (e, + , ') by at most repeated use of 
I and II alone. 

I t remains only to show that in this example Postulate 1.8 
is satisfied and Postulate 1.1 is violated. 
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The explicit details required for rigorous proof involve much 
repetition unless one makes use of lemmas (here denoted by 
Arabic numerals). While III is frequently invoked, it is needed 
formally only in certain more specialized forms here listed as 
Lemmas 1-8, together sufficient to replace III in this discussion. 
Each of these follows from III by inspection, by the simple ex­
pedient of comparing the minimum number of times a sign + 
or ' appears in formal expressions for elements being compared. 

1. (i) If (a+b)=b, then a = b. (ii) If [a + (b+c)]=c, then 
a = b=c. 

2. If a^p, and if c^d, and if (a+b) = (c+d), then either (i) 
a = c and b = d, or else (ii) a = d and b — c, 

3. a, a', a"', a"', etc., are distinct. 
4. If a' = b', then a = b. 
5. (i) (a+b')9*b, (ii) (a+b)'^b, (iii) [(a+b)'+c]^b, 

(iv) ( a + 6 ' ) V & , (v) [(a+b)'+c]'9*b, (vi) (a+b")^b. 
6. (i) (u"+u)^(a'+a), (ii) (u'"+u)^(a'+a). 
7. If (a+b)=c', then a = b = c'. 
8. (i) flVe, (ii) (<*'+&)?*«. 

We now prove Lemmas 9-19, using I and II and Lemmas 1-8. 
9. (i) (a+b)^b', since otherwise by 7, a = b = b', violating 3. 

(ii) (a+Z>)/7z£(a+£), since otherwise by 7, # = (#+&)' violating 
5(ii), using II . (iii) (a+b) ^b"\ since otherwise by 7, a = b = b'", 
violating 3. 

10. If c=[(a+b)' + (a+b')], then (i) c ^ a , (ii) c^b, (iii) 
c V J , (iv) c^b'. 

Proof, (i) [(a+&)' + ( a + ö ' ) W by 5 (iii). (ii) [(a+b)' 
+ (a+b')]^b, by 5 (iii). (iii) [ ( a +&) ' + (a + ô O ] V è , by 5 (v). 
(iv) [(a+&)' + ( a + ô ' ) ] ^ & ' , since otherwise by 7, ( a + 6 ) ' 
= (a+b'), which violates 9 (ii). 

11. [(a+b)' + (a+c)]^d't since otherwise by 7, ( a + 6 ) ' 
= ( a+c) , violating 9 (ii). 

12. [(a+&)' + (a+e)]p*c, since otherwise by 1 (ii), (a+b)' 
= a, violating 5 (ii). 

13. If {[(a+b)' + (a+c)]+d\ =(b'+c), then a = b = c, and 
henced = ( a ' + a ) . 

PROOF. A. Let c = b'. Then { [(a+b)' + (a+b')]+d) = 6', 
and by 7, [(a + &)' + (a+6')]=&'» and again by 7, ( a + 6 ) ' 
= ( a - fô ' )=&' . From (a+b)' = b', by 4 and 1 (i) follows a = b. 
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From (a+b') =&', by 1 (i) or 7 follows a = b'. Then b = b' con­
trary to 3. 

B. Let c^b', and d^ [(a+b)'+ (a+c)]. Then by 2, either 
(i) b'= [(a+b)'+ (a+c)] and d = c, or else (ii) b' = d, and 
c= [(a + b)' + (a+c)]. But (i) violates 11, and (ii) violates 12. 

C. Let c?*b', but d = [(a+b)'+ (a+c)]. Then by I, 2 and 4 
either (i) b = (a+b) and c = (a+c) or else (ii) b' = (a + c) and 
c = ( a + ô)'. In (i) by l(i) , a = b and a = c. Hence a = b = c, as 
allowed for in the hypothesis of the theorem. In (ii) by 7, 
a = c = b', and on substituting in c = (a+b)' one has b' = (b'+b)', 
whence by 4, b = (b'+b), which by l(i) violates 3. 

14. [(a + b)' + (a+c)]'^(b'+c)} since otherwise by 7, b' = c 
= [(a + &)' + ( a + c ) ] ' , and by 4, b= [(a+b)' + (a+c)], violating 
5 (iii). 

15. (i)(u'"+u)^[b' + (a+b)l(ii)(u'"+u)^{(b'+c)'+[(a 
+b)' + (a+c)]}. 

PROOF, (i) By 3 and 9 (i) one may apply 2. Under one alter­
native, u'" = b' and u = (a+b). Hence by 4, one has u = (a+un) 
contradicting 5(vi). The other alternative yields u'"= (a + b), 
u = b'. Hence, by 7, a = b = u'", or w = ^ i v , contradicting 3. 
(ii) By 3, 11, 2 and 4, either w" = (6 '+c) and u=[(a+b)' 
+ (a+c)] or else * ' " = [(a+b)'+ (a+c)] and ^ = (&'+c)'. In 
the former case by 7, b' = c = u", and by 4, b = u', whence 
[(a+b)' + (a + c)]' = b contrary to 5(v). In the latter case by 7, 
(a+b)' = (a+c) contrary to 9(ii). 

16. If [(x+y)' + (x+z)] = (b'+c) and also [(a+b)' + (a+c)] 
= (y'+z), then a = b = c = x = y = z. 

PROOF. By 11, c^b' and z^y'. By9(ii) , (x+y)'^(x+z), and 
(a+5) /7z é(a + ^). Hence, by 2 and 4, one of the four following 
conditions holds, (i) (x+y) =&, (x+z) =£, (a + b) =y, (a + c) =z, 
or (ii) (x+y)—b, (x+z)=c, (a+b)'=z, (a+c)=y', or (iii) 
(x+3;) / = c, ( x + ^ ) = ô / , (a+b)=y, (a+c) =z, or (iv) (x+3>)' = £, 
( x + ^ ) = 5 / , (a+&)/==s, ( a + c ) = y . In (i) we have [# + (&+&)] 
= b, [x+(a + c)] = c. Hence by l(ii), x = a = b = c} and upon sub­
stituting, a = b = c = x = y = z. In (ii), upon substituting one has 
[a+(x+y)]f =z, and [a + (x+z)]=y'. Hence by 7, a = (x+z) 
= y' and hence by 7 again, a = x = z = y'. Hence [ y + Cy '+y)] ' 
= y', or by 4, IJy' + Cy'+iy)] =y so that by l(ii), y — y' contra­
dicting 3. Case (iii) differs from case (ii) only by a change of 
letters throughout. In case (iv) by 7, o n e h a s t f : ^ ^ ' , a = c = y'. 
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Hence upon substituting, (x+y)' =y', (a+b)' = b'. Hence by 4 
and l(i), x=y, a = b. But then b=yf and y = b', or b—b" con­
trary to 3. 

17. d' is not in T. 
PROOF. A. d'^e (by 8(i)); B. d'^(a'+a), (by 7 and 3); 

C. i V [&' + (* + &)] for a^&, (by 7 and 9(i)) ; D. d'* {(b' + c)' 
+ [(a + b)' + (a+c)]}, where a, ô, c are not all equal, for other­
wise by 7, (b'+c)' = [(a+b)' + (a+c)]} and by 7 again, ( a + 6 ) ' 
= (a+c) contrary to 9(ii). 

18. If x and y are distinct elements in K, then [(x+3>)'+3>] 
is not in T. 

PROOF. A. [(x+y)'+y]^e} by 8(ii). 
B. [(x+y)f+y]^£(a'+a) for x ^ y , since otherwise by 3, 

5(ii), 2, and 4, either (i) (x+;y) =a and y = #, or else (ii) (x+y)' 
= a> and y= a'. But in (i) (x+y) =y, and hence by l(i), x=y, 
contrary to hypothesis. In (ii) (x+a')'=a, contrary to 5(iv). 

C. For X9*y, [(x+y)'+y]^[b' + (a+b)], for a^b. Other­
wise by 2 and 4, either (i) (x+y)=b and y = (a+b), or (ii) 
(x+y)' = ( a + 6) and y = b'. In (i) [# + (#+&)] =6, and hence by 
1 (ii) x = a = b, and hence also #=3/, contrary to hypothesis. In 
(ii) by 7, a = b = (x+y)', and hence b = (x+b')', contrary to 
5(iv). 

D. For x^y, [(x+y)'+y]^ {(b'+c)' + [(a+b)' + (a+c) ] } , 
for a, &, c not all equal. 

PROOF. By 11, [(a+b)' + (a+c)]^(b'+c)\ and by 5(i), 
y 9^ (x+y)'. Hence were the theorem false in this case, by 2 
and 4, either (i) (x+y) = (b' + c) and y= [(a+b)'+ (a + c)], or 
else (ii) (x+y)'= [(a + b)'+ (a + c)] and y = (b'+c)'. In (i) 
{x+[(a+b)' + (a+c)]\ = (b' + c). Hence by 13, a = & = c, and 
# = ( a ' + a ) =;y, contrary to hypothesis. In (ii) by 7, (a+b)' 
= (a + c) contrary to 9(ii). 

19. { [(x+y)' + (x+z)]' + (y'+z)} is not in T if x, y, z are 
not all equal. 

PROOF. A. { [(x+y)' + (x+z)]' + (y'+z)} 9*e, by 8(ii). 
B. { [(x+y)' + (x+z)]' + (y'+z) ) ^(a'+a), unless x=y = z. 

By 14, 3, 2, and4, either (i) [(x+y)f + (x+z) ] = a<md (y'+z)=a, 
or (ii) [(x+y)' + (x+z)]'=a, and (y'+z)=a'. In (i), [(x+y)' 
+ (x+z)] = (y'+z) which by 13 (for d= [(x+y)' + (x+z)]) is 
only possible for x =y=z. In (ii), [(x+y)' + (x+z)]" = (y'+z). 
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Hence by 7, z=y' = [(x+y)' + (x+z)]" and by 4, y= [(x+y)' 
+ (x+z)]', contradicting 5(v). 

C. For x, y, z not all equal, { [(x+y)' + (x+z)]' + (y'+z)} 
9*[b' + (a+b)], where a^b. By 14, 9(i), 2 and 4, either (i) 
[(x+y)' + (x+z)]=b and (y '+z) = (a+&), or e1se (ii) [(x+y)' 
+ (x+z)]' = (a+b) and ( / + * ) = & ' . In (i) ( / + * ) = { * + 
[(#+;y)' + (#+£)]} which by 13 is possible only for x — y — z. In 
(ii), by 7 and 4, a = b= [(x+y)' + (x+z)]', y = b, z=y'. Hence 
upon substituting, [(x+y)' + (x+y')]' =y contradicting 10(iii). 

D. For*,;y,snotallequal, { [(x+y)' + (x+z)]' + (y'+z)} j* {(b' 
+c)'+ [(a+b)' + (a+c)]}, where a, by c, are not all equal. 
Otherwise by 14, 11, 2 and 4, either (i) [(x+y)' + (x+z)] 
= (b'+c) and (y'+z) = [(a+b)' + (a + c)l or else (ii) [(x+y)' 
+ (x+z)]'= [(a+b)' + (a + c)] and (y'+z) = (b'+c)'. Incase (i) 
by 16, a = b = c = x—y=z1 excluded by hypothesis. In case (ii) 
by 7, (a+b)' = (a + c) contrary to 9(ii). 

THEOREM. Postulate 1.8 is satisfied. 

PROOF. The postulate may be restated as follows: Ifu^v, and 
if (u'+v) is in T, then (v'+u) is not in T. To prove this one 
need only test the possible expressions for (u'+v), with UT^V, 
which are in T. One may note first that VT^U'', since by 17, u' 
is not in T. Consider in turn the available alternatives A-D. 
A. (u'+v)^e, by 8(ii). B. Let (u'+v) = (a'+a). Since v^u'f one 
has by 2 and 4, either u = a=v> (contrary to hypothesis), or 
else u' = a and v = a', so that (v' + u) = (u'"+u). But the possible 
alternatives A-D for this subcase are to be successively rejected 
by use of 8(ii), 6(ii), 15(i) and (ii). C. Let (u'+v) = [b' + (a + b) ], 
for a^b. Then by 2 and 4, either (i) u = b, and v = (a+b) or (ii) 
u> = (a + b) and v = b'. In (i) (v'+u) = [(a+b)'+b], with a^b. 
But by 18, this is not in T. In (ii), by 7, a = &, contrary to hy­
pothesis. D. Let (u'+v)={(b'+c)'+[(a + b)' + (a+c)]}, with 
UT^VJ and with a, &, £ not all equal. Then in view of 17, by 2 
and 4, it follows that either (i) u = (b'+c) and v=[(a+b)' 
+ (a+c)] or else (ii) u'=[(a+b)' + (a+c)] and » = (b'+c)'. In 
(i) (z>'+w) cannot be in T by 19 while (ii) contradicts 11. 

THEOREM. Postulate 1.1 fails to hold. 

PROOF, e is in T, (A), and hence, (C), [e' + (e"+e)] is in T. 
But as is now to be shown (e"+e) is not in 7\ Indeed, we have 
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A. (e" + e) 9*e, by 8(ii). B. (e" + e) * (a'+a), by 6(i). C. (e"+e) 
9*[b' + (a+b)]. For otherwise, by 3, 9(i), 2 and 4, either (i) 
e' = b and e = (a + b), or else (ii) e = b' and e"*=(a + b). But (i) 
is impossible since (a + b)f9^b by 5 (ii), and (ii) is impossible 
since e*b' by 8(i). D. (e"+e)^ {(b'+c)'+ [(a+b)' + (a+c)]}. 
Indeed otherwise in view of 3, 11, 2 and 4, either (i) e' = (b'+c) 
and e= [(a + b)' + (a + c)] which contradicts 8(ii), or else (ii) 
e"=*[(a+b)' + (a + c)] and e = (b'+c)' which contradicts 8(i) 
and also 11. 

BROWN UNIVERSITY 

CONCURRENCE AND UNCOUNTABILITY* 
BY N. E. RUTT 

1. Introduction. The point set of chief interest in this paper, 
a plane bounded continuum Z, is the sum of a continuum X and 
a class of connected sets [Xa], each element Xa of which has at 
least one limit point in X and is a closed subset of cu(X+Xb), 
where Xb is any element of [Xa] different from Xa and where 
cu(X+Xb) is the unbounded component of the plane comple­
ment of the set X+Xb. Upon a basis of separation properties, 
orderf may be assigned to the elements of [Xa] agreeing in its 
details with that of some subset of a simple closed curve. We 
shall use some definite element Xr of [Xa] as reference element, 
selecting as Xr one of [Xa] containing a point arcwise accessible 
from cu(Z). A countable subcollection [Xih] of [Xa] excluding 
Xr is called a series if for each j , 0' = 2, 3, 4, • • • ), the ele­
ments Xj and Xr separate X3--i and Xj+\. Two different series 
[Xih\ and [Xik] are said to be opposite in sense if there exist 
different subscripts m and n such that Xm

h and Xm
k separate 

both Xn
h and Xn

k from Xr; otherwise they are said to have the 
same sense. They are said to be concurrent if they have the same 
sense and if there exists no element of [Xa] which together 

* Presented to the Society, February 25, 1933. 
t R. L. Moore, Concerning the sum of a countable number of continua in the 

plane, Fundamenta Mathematicae, vol. 6, pp. 189-202; J. H. Roberts, Con­
cerning collections of continua not all bounded, American Journal of Mathe­
matics, vol. 52 (1930), pp. 551-562; N. E. Rutt, On certain types of plane con­
tinua, Transactions of this Society, vol. 33, No. 3, pp. 806-816. 


