TRANSFORMATIONS ASSOCIATED WITH THE LINES OF A CUBIC, QUADRATIC, OR LINEAR COMPLEX* ## BY I. O. HORSFALL - 1. Introduction. In this paper it is shown that two equations bilinear in p_{ik} and x_i define an extensive type of cubic complex and also map the complex on the space (x) so that each line is mapped by a point on itself. The cubic complex of lines joining corresponding points of the general cubic involutorial transformation is included as a special case. The method is also applied to two known cases of the quadratic complex and the linear non-special and special complex. - 2. The Cubic Complex. Let $$\sum x_i f_i(p) = 0,$$ and (2) $$\sum x_i F_i(p) = 0, \qquad (i = 1, 2, 3, 4),$$ be two equations bilinear in x_i and the line coordinates $$p_{ik} = x_i y_k - x_k y_i.$$ The x_i and p_{ik} satisfy four identities of the type (3) $$x_i p_{jk} + x_j p_{ki} + x_k p_{ij} = 0.$$ The equations (1) and (2) represent two quadrics through (y) which meet in a C_4 through (y). The lines of the cubic cone with vertex (y) through C_4 belong to a cubic complex. If we eliminate the x_i from (1) and (2) and any two of (3), we have the equation of the cubic complex each line (l) of which is mapped by a point (x) on (l). From (1), (2), and (3) we see that the p_{ik} are quartic functions of x_i . Hence any linear complex meets the cubic complex in a cubic congruence which is mapped by a quartic surface $F_4(x)$. Two linear complexes meet the cubic complex in a cubic ruled ^{*} Presented to the Society, October 29, 1932. surface which is mapped by the intersection of the two corresponding F_4 's. Let $$x_1 = x_2 = 0, \qquad x_3 = x_4 = 0$$ be the pair of polar lines common to the linear complexes. If the coordinates of a line through a point (x) meeting the polar lines are substituted in (1) and (2), we have two cubic surfaces through $x_1=x_2=0$, $x_3=x_4=0$ which meet in a residual C_7 , the variable intersection of the two F_4 's. The C_7 meets each polar line in 4 points and is of genus 4. The common curve of all the F_4 's meets C_7 in 22 points and is of genus 8. Hence the cubic complex is mapped on S_3 by the linear system of quartic surfaces through a C_9 , p=8. 3. The Cubic Complex of the General Cubic Involutorial Transformation. If (y) and (z) are conjugate points in the involutorial transformation they are polar conjugates with respect to three quadrics which by a suitable choice of coordinates have the equations* $$a_1x_1x_4 + a_2x_2x_4 + a_3x_3x_4 - x_2x_3 = 0,$$ $$(4) \qquad b_1x_1x_4 + b_2x_2x_4 + b_3x_3x_4 - x_3x_1 = 0,$$ $$c_1x_1x_4 + c_2x_2x_4 + c_3x_3x_4 - x_1x_2 = 0.$$ Hence, if $$g_{ij} = y_iz_j + y_jz_i, \qquad (i, j = 1, \dots, 4),$$ the three bilinear equations which define the involution may be written in the form (5) $$g_{23} = a_1 g_{41} + a_2 g_{42} + a_3 g_{43}, \ g_{31} = b_1 g_{41} + b_2 g_{42} + b_3 g_{43},$$ $$g_{12} = c_1 g_{41} + c_2 g_{42} + c_3 g_{43}.$$ The g_{ij} and p_{ik} satisfy the identities which express the fact that $(g_{i1}, g_{i2}, g_{i3}, g_{i4})$, $(i = 1, \dots, 4)$, are on the line p_{ik} . Hence (6) $$g_{21}p_{34} + g_{23}p_{41} + g_{24}p_{13} = 0$$, $g_{12}p_{43} + g_{14}p_{32} + g_{13}p_{24} = 0$. If we substitute in (6) for g_{23} , g_{31} , g_{12} from (5) and use x_i for g_{4i} , (i=1, 2, 3, 4), then (6) is the form of (1) and (2) for this case. These two equations with any two of (3) define the cubic com- ^{*} F. R. Sharpe and V. Snyder, The (1, 2) correspondence associated with the cubic space involution of order two, Transactions of this Society, vol. 25 (1923), pp. 1-12. plex and map a line (l) of the complex on a point (x) of (l).* The cubic inversion† is the special case when $$a_1 = b_2 = c_3 = 1$$, and the other coefficients in (4) are zero. 4. The First Type of the Quadratic Complex. If the cubic complex of $\S 2$ reduces to a quadratic complex, then C_4 must break up into a cubic curve through (y) and either a line joining (y) to a fixed point O, or a fixed line (l). In the first case the quadratic complex contains the bundle of lines through O, and the Kummer surface is a Steiner surface having three double lines through the triple point O. If the planes through the lines are $$x_1 = 0, \quad x_2 = 0, \quad x_3 = 0,$$ the quadratic complex has an equation of the form $$ap_{23}p_{14} + bp_{31}p_{24} + cp_{12}p_{34} + F_2 = 0,$$ where F_2 is quadratic in p_{23} , p_{31} , p_{12} . Consider the bilinear equation (8) $$p_{23}(Ax) + p_{31}(Bx) + p_{12}(Cx) = 0.$$ From equations (3), (7), and (8) we can derive the equations $$\frac{p_{23}}{x_2(Cx) - x_3(Bx)} = \frac{p_{31}}{x_3(Ax) - x_1(Cx)} = \frac{p_{12}}{x_1(Bx) - x_2(Ax)},$$ which may be written (9) $$\frac{p_{23}}{f_1} = \frac{p_{31}}{f_2} = \frac{p_{12}}{f_3},$$ where $f_i = 0$ is a quadric through a cubic C_3 which passes through O. Using (9) we find ^{*} For another method of mapping the cubic complex see D. Montesano, Su di un complesso di rette del terzo grado, Bologna Memoria, 1893, pp. 549–577. See p. 565. [†] L. Godeaux, Recherches sur les surfaces algébriques de genres zéro et de bigenre un, Académie Royale de Belgique, Classe des Sciences, Bulletin, (5), vol. 12 (1926), pp. 892-904. See pp. 896-897. $$p_{23} = f_1(ax_1f_1 + bx_2f_2 + cx_3f_3),$$ $$p_{31} = f_2(ax_1f_1 + bx_2f_2 + cx_3f_3),$$ $$p_{12} = f_3(ax_1f_1 + bx_2f_2 + cx_3f_3),$$ $$p_{14} = x_1F_2(f) - (b - c)f_2f_3x_4,$$ $$p_{24} = x_2F_2(f) - (c - a)f_3f_1x_4,$$ $$p_{34} = x_3F_2(f) - (a - b)f_1f_2x_4.$$ Hence if (x) is given, the p_{ik} are quintic functions of the x_i . Conversely, if the p_{ik} are given satisfying (7), we can write (8) in the form $$d_1x_1 + d_2x_2 + d_3x_3 + d_4x_4 = 0$$ and, using (3), we can find for x_i the expressions $$(11) x_i = d_1 p_{i1} + d_2 p_{i2} + d_3 p_{i3} + d_4 p_{i4}, (i = 1, 2, 3, 4),$$ which are quadratic in the p_{ik} . The quintic surfaces (10), $p_{ik} = 0$, have C_3 for double curve. From (10) we see that if p_{23} , p_{31} , p_{12} are fixed, then the lines of the complex lie in the fixed plane $$(12) x_1f_1 + x_2f_2 + x_3f_3 = 0,$$ and pass through the point (y) on the Steiner surface, where (13) $$y_1 = (b-c)f_2f_3, y_2 = (c-a)f_3f_1, y_3 = (a-b)f_1f_2, y_4 = F_2(f).$$ The equations (13) map the Steiner surface on a plane (f_1, f_2, f_3) . If we substitute the values of (y) from (13) in (8) we have the condition that the point (y) lies on the line in which (8) meets (12). This is a cubic relation in (f) so that on the plane (f) we have a cubic curve of genus 1 to which corresponds a C_6 , p=1, on the Steiner surface meeting C_3 in the 9 points apart from O in which C_3 meets the Steiner surface. This C_6 lies on all the quintic surfaces $p_{ik}=0$. The intersection of the quadratic complex with a linear complex is therefore mapped by a quintic surface $F_5: C_3^2 C_6$. Two quintic surfaces meet in a variable C_7 , p=1, meeting C_3 in 11 points and C_6 in 9 points. Three quintic surfaces meet in 4 variable points. 5. The Cremona Transformation Associated with the Quadratic Complex. Consider a second bilinear equation (14) $$p_{23}(A'x) + p_{31}(B'x) + p_{12}(C'x)$$ = $d_1' x_1 + d_2' x_2 + d_3' x_3 + d_4' x_4 = 0$. Solving as in (11) for x_i in terms of p_{ik} and substituting from (10), we have expressions which are linear in the F_5 : C_3^* C_6 with coefficients linear in (f). Hence we have a Cremona transformation of order 7 of the form F_7 : C_3^* C_6 . A surface F_7 : C_3^* can be mapped on a plane by C_5 : 18A, quintics through 18 fixed points. The curve C_3 is mapped by C_9 : 18A 2 and the intersection of a variable F_7 : C_3^* by C_8 : 18A. For the system F_7 : C_3^* C_6 , the C_8 : 18A consist of C_2 : 3A, image of the variable curve C_7 , p=0, a fixed C_3 : 9A, image of C_6 , p=1, and a fixed curve C_9 , p=1. The triple curve C_3 meets C_6 and C_9 in 9 and 15 points, respectively, and C_7 in 12 points, C_6 and C_9 meet in 9 points and meet C_7 in 6 points.* 6. The Involutorial Transformation belonging to the Quadratic Complex. If we replace (14) by $$(15) p_{23}H_1 + p_{31}H_2 + p_{12}H_3 = 0,$$ where $H_i = 0$ is a quadric, the surfaces $f_i = 0$ are cubics through a C_7 , p = 5, which passes through O, and the surfaces $p_{ik} = 0$ are of the form F_7 : C_7 ². The line in which the plane (8) met the plane (12) is replaced by a conic. If the point (y) is on the conic, we have a relation of the fifth order in f_1 , f_2 , f_3 so that the surfaces F_7 are of the form F_7 : C_7 2 C_{10} , p=6. The curve C_7 meets the Steiner surface in 25 points apart from O. Hence C_7 meets C_{10} in 25 points. \dagger To a line of the complex correspond two points (x)on the line. Two surfaces F_7 : C_7 2 C_{10} meet in a variable C_{11} , p=8, meeting C_7 and C_{10} in 27 and 15 points, respectively. Three of the surfaces meet in 8 variable points. Given a plane (kx) = 0, we can find the x_i in terms of the k_i and p_{ik} as in (11). Substituting these values for the (x_i) in (15) and for the p_{ik} from (10), we have a relation which is quadratic in the k_i of which (kx) is a factor. The other factor is the image of (kx) = 0 in the involutorial transformation which interchanges the two points (x) ^{*} Compare D. Montesano, Su le trasformazioni univoche dello spazio che determinano complessi quadratice di rette, Reale Istituto Lombardo Rendiconti, (2), vol. 25 (1892). See p. 803. [†] Compare D. Montesano, Reale Istituto Lombardo Rendiconti, (2), vol. 25 (1892), p. 802. on a line p_{ik} of the complex. This involutorial transformation is therefore of the form F_{16} : $C_7^5C_{10}^2$. There are 25 trisecants of C_7 which meet C_{10} so that the surfaces all contain these 25 parasitic lines. 7. The Second Type of the Quadratic Complex. If the quadrics (7) and (8) are replaced by $$(16) ax_1 = bx_2, cx_1 = dx_2,$$ where a, b, c, and d are linear in the p_{ik} , the lines belong to the quadratic complex ad-bc=0. The intersection of this complex with a linear complex is mapped by a quartic surface $F_4:l^2$, where $l \equiv x_1 = x_2 = 0$. The intersection with a linear congruence is mapped by the intersection of two cubic surfaces through l and the directrices of the congruence and is therefore a variable C_6 , p=1, meeting l in four points. Two of the surfaces $F_4:l^2$ meet therefore in a fixed C_6 , p=1, meeting l in four points. Consider a second pair of equations $$(17) ax_3 = bx_4, cx_3 = dx_4,$$ which give a second mapping of ad-bc=0. The two mappings determine a (5, 5) Cremona transformation $F_5:l^3C_6$. There is therefore an additional simple basis curve C_5 , p=0, meeting l and C_6 in four and eight points, respectively.* 8. The Second Type of Involutorial Transformation. If we replace (16) by $$aH_1 = bH_2, \quad cH_1 = dH_2,$$ where $H_1=0$, $H_2=0$ are quadrics meeting in C_4 , p=1, the intersection of the quadratic complex ad-bc=0 with a linear complex is mapped by a sextic surface $F_6: C_4^2$, and with a linear congruence by the intersection of two quartic surfaces through the directrices of the congruence and through C_4 , that is, by a C_{10} , p=7, meeting C_4 in 16 points. Two surfaces $F_6: C_4^2$ meet therefore in a variable C_{10} , p=7, and a fixed C_{10} , p=7, meeting C_4 in 16 points. On each line of the complex are two associated points (x) and (x'). Given a plane $\Sigma a_i x_i' = 0$, we find ^{*} F. R. Sharpe, Involutions of order n with an (n-2)-fold line, Annals of Mathematics, (2), vol. 31 (1930), pp. 637-640. $$x_1' = a_2 p_{12} + a_3 p_{13} + a_4 p_{14}$$ and three similar equations. From (18) we have $$H_1'H_2 - H_2'H_1 = 0.$$ Substituting for the x_i' and for the p_{ik} in terms of the x_i we have a relation which is quadratic in a_i and has $\sum a_i x_i$ for a factor. The other factor is the image of $\sum a_i x_i' = 0$ by the involutorial transformation defined by (18). Hence the transformation is of the form F_{13} : $C_4^5 C_{10}^2$. There are 16 bisecants of C_4 which are bisecants of C_{10} and therefore lie on the F_{13} .* 9. The Linear Complex. Consider the linear complex $p_{12} = p_{34}$ and the bilinear equation $$m_2p_{13} + m_3p_{14} + m_4p_{23} + m_5p_{24} + m_6p_{34} = 0$$, where the m_i are linear in x_i . Proceeding as in §2 we may show that the linear complex is mapped on S_3 by the linear system of cubic surfaces through a C_5 , p=1. The transformations belonging to a linear or special linear complex have been discussed synthetically by Montesano and Pieri. If we use one equation bilinear in x_i and p_{ik} and either $p_{12} = p_{34}$ or $p_{12} = 0$, we can readily obtain the results of Montesano† and Pieri.‡ CORNELL UNIVERSITY ^{*} D. Montesano, Reale Istituto Lombardo Rendiconti, (2), vol. 25 (1892), p. 803. [†] Compare D. Montesano, Napoli Accademia delle Scienze Fisiche e Matematiche, Rendiconti, (2), vol. 2 (1888), pp. 181–188. D. Montesano, Rendiconti dei Lincei, vol. 4 (1st semester), 1888, pp. 207–215, 277–285. [‡] Pieri, Rendiconti di Palermo, vol. 6 (1892), pp. 234-244.