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CONCERNING ADJUNCTIONS TO ALGEBRAS 

BY J. L. DORROH* 

In §3 of his paper, Algebras which do not possess a finite basis ^ 
J. H. M. Wedderburn gives a set of postulates and definitions for 
an algebra. The question of the possibility of adjoining an iden­
tity to such an algebra arises. The purpose of the present paper 
is to show that this adjunction is always possible. 

I t may be seen from the arguments that Theorems 1 and 2 re­
main true if the term algebra be replaced by one implying a set of 
elements of which it is assumed only that it is an abelian group 
under addition and a semi-group under multiplication.The proof 
of Theorem 3 employs a distributive property, as will be in­
dicated. 

THEOREM 1. J If A is an algebra, then there exists an algebra B 
which contains a proper, invariant subalgebra A1 isomorphic^ 
with A and an element I not in A' such that, for every element b 
of B, the relation Ib = bl = b holds. 

If x is an element of A and n is a positive rational integer, 
let nx = xn denote the sum x+x+ • • • +x (n summands) and 
let ( — n)x = x( — n) denote the same sum as n( — x). Let Ox 

Let B denote the set of all pairs (n, x) where n is a rational 
integer and x is an element of A. Suppose that (n, x) + (m, y) 
= (n+m, x+y). Then B is an abelian group under addition. Let 
(n, x) (m, y) = (nm, ny+mx+xy). Then B is an algebra and the 
subset A' of B consisting of all the elements of B of the form 
(0, x) is isomorphic with A and is invariant in B. Let / denote 
the element (1, 0) of B; (1, 0) (n, x) = (n, x) (1, 0) = (n, x) for 
every n and x. 

The multiplication in B is distributive, associative and distri­
butive, commutative, respectively, provided the same is true 
for i l . 

* National Research Fellow. 
t Transactions of this Society, vol. 26 (1924), pp. 395-426. 
t For a proof of this theorem for an algebra with a finite basis, see, for ex­

ample, L. E. Dickson, Algebras and their Arithmetics, 1923, p. 97. 
§ In this paper isomorphism means simple isomorphism. 
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THEOREM 2. If an algebra A has the properties 

(1) if x is an element of A and m is a positive rational integer, 
A contains an element y such that my = x ; 

(2) if x is an element of A and m is a positive rational integer 
and x9*0, we have mx^O; then there exists an algebra B which con­
tains a proper, invariant subalgebra isomorphic with A and a pro­
per subalgebra isomorphic with the rational field. 

If x is an element of A and m is a positive integer, it follows 
from (1) that A contains an element y such my — x; let y be 
denoted by x/m ; it follows from (2) that x/m is unique. 

If r is a rational number, let r = m/n, where m and n are integers 
and n is positive. Let rx = xr = m(x/n) for each element x of A. 
Then rx is unique, for suppose that m and n have been chosen 
relatively prime and let k denote a positive integer, then 
km(x/(kn))=m(x/n), for kn[km(x/(kn)) ] = kmx = kn[m(x/n) ] 
and the equality of the brackets follows from (2). 

Let B denote the set of all pairs (r, x) where r is a rational 
number and x is an element of A. Under the following rules for 
addition and multiplication B is an algebra: 

(1) (r, x) + (r', x') = (r + r',x + xf), 

(2) (r, x)(r', xf) = {rrf
yrx' + r'x + xxf). 

The element (1, 0) of B is its identity, since we have (1, 0) (r, x) 
= (r,x) = (r,x) (1,0) . 

The set of all the elements of B of the form (0, x) is a proper, 
invariant subalgebra of B and it is isomorphic with A. 

The set of all the elements of B of the form (r, 0) is a proper 
subalgebra of B isomorphic with the rational field. 

The multiplication in B is distributive, associative and dis­
tributive, commutative, respectively, provided the same is true 
for A. 

THEOREM 3. If A is an algebra subject to condition (2) of 
Theorem 2, there exists an algebra B which contains a subalgebra 
isomorphic with A and such that, if b is an element of B and n is 
a positive rational integer, B contains a unique element c such that 
nc = b. 

In the set D of all pairs (r, x), where r is a rational number and 
x is an element of A, (r, x) will be said to be equivalent to 
(rf, x') if svx = tux', where r = s/t and rf = u/v, and where s, t, u 
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and v are integers and / and v are positive. This relation will be 
denoted by (r, x)~(r', xf). From the hypothesis concerning A 
it follows that the equivalence of (r, x) and (r', xf) is indepen­
dent of the choice of rational expressions for r and r'. 

(1) (r, * ) ~ ( r , *) . 
(2) If (r, x)~(r', x'), then (r', #')~(f> %)• 
(3) If (r, # ) ~ ( r ' , x') and (r', # ')~0'"> #")> then also (r> # ) ~ 

(r", x"). Let r = s/t, r' = u/v, r" = p/q; s, t, u, v, p, q integers 
and / > 0 , v>0, q>0. If svx = tuxf and uqx' = vpx", then 

*svqx = tuqx' and tuqx' = tvpx" ) hence svqx — tvpx" and therefore 
sg# = ^ x " . 

Let (r, x) + (r', #') = (l/(ft;), $z/#+/w#'), where r = s/t, r' = u/v; 
s y t, u, v integers and t, v positive. If (r', x')~(r", x"), then 
(r, x) + (r /, x')~(r} x) + (r", x"). Let r" = p/q\ py q integers 
and g > 0 . Then (r, *) + ( r " , * " ) = (l/(/g), sqx+ptx"). By hypo­
thesis uqxf — vpx". Hence we have tuqx' — tvpx" and therefore 
(l/(tvq)y svqx+tuqx')~(l/(tvq), svqx+tvpx"), but (l/(tvq), 
svqx+tuqx')~(l/(tv), svx + tux') and {\/{tvq)y svqx+tvpx") 
~( l / (*g ) , sqx+tpx"). I t follows that if (r, *0~( r" ' , * '") and 
(r', * ' ) ~ ( r " , * " ) , then (r, *) + (r', x ' ) ~ ( ' " ' , *"') + ( '". * " ) . 

Let (r, x)(r ' , x') = (rr', xxf). Then if (r', x')~(rn, x"), 
(r, x)(r ' , # ' )~(r> x)(r"ix"). For by hypothesis ^gx' = z;£#" and 
hence uqxx' =vpxx" (r = s/t, r' = u/v, r"=p/q as before), and 
hence* stuqxx' = stvpxx''. Similarly (r',x')(r, x)~(rn,x")(r9 x). 
Hence if (r, * ) ~ ( r ' " , * ' " ) , then (r, *)(r ' , * ' ) ~ ( ' " ' . * ' " ) 
• ( r " , * " ) . 

For each rational number w let w(r, x) = (r, x)ze> = (wr, x). 
For each (r, x) of D let C(r,ao denote the class of all pairs 

(r ' , x ') of Z? such that (r', xO^Cf, #). Then C(r.ta.) — C( ,.",*") if, 
and only if, (r, x ) ^ ( > " , x " ) . Let C(r,x) + C(r>tx>) = C(r,x)+(r'tx') 
and let C(r,aoC(r',»') = C(r,x)(r',x').'\ These products and sums 
are unique. For each rational number w let «/C(f,x)= [C<r,*)]w 

* To establish this equation and the corresponding one implied by the suc­
ceeding expressions in the text, it is sufficient to assume that if n is a positive 
rational integer and x and y are elements of A, then x(ny)=*nxy and (ny)x 
— n(yx). That this is a distributive property is seen from the definition of ny. 

t For convenience the ordinary symbols for addition and multiplication 
are retained, although the operations are not the ones they would ordinarily 
indicate for classes. 
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Let B denote the collection of all the classes C{r>x). Then B 
is an algebra. The subset A ' of B consisting of all the classes 
C(i,X) of B is isomorphic with A and is identical with B if, and 
only if, for each element x of A and each positive rational integer 
mt A contains an element x/m such that m(x/m) =x. 

If C(r,x) is an element of B and m is a positive rational integer, 
then C(r/m,x) is an element of B and mCir/m,x) = C(r,x). 

Multiplication in B is associative, commutative, distributive, 
respectively, if the same is true for A. 

PRINCETON UNIVERSITY 

ON THE RANK OF THE PRODUCT OF CERTAIN 
SQUARE MATRICES* 

BY W. O. MENGE 

1. Introduction. This paper presents several theorems which 
were found during an investigation conducted by the author in­
to the structure of matrices which transform given matrices in­
to their so-called classic and rational canonical forms, t When 
the elementary divisors of a given matrix are known, these 
theorems completely determine the rank of a product of ma­
trices of the form 

fliA-XJ)"'. 

An interesting proof of the Hamilton-Cayley theorem and a de­
termination of the equation of minimum degree satisfied by a 
matrix are obtained from this point of view. 

2. Invariant Factors. Consider the square matrix A = (ai;-) of 
order n with constant elements. If the w-rowed identity matrix 
be denoted by 7, the characteristic matrix (A —XI) is defined as 
the matrix obtained by subtracting the variable X from each 
principal diagonal element of A. The determinant, D(X), of the 
characteristic matrix (A — XJ) is called the characteristic de-

* Presented to the Society, December 30, 1930. The author wishes to ac­
knowledge his appreciation to J. A. Nyswander, University of Michigan, for 
many helpful suggestions throughout the progress of the work. 

t Dickson, Modern Algebraic Theory, Chap. 5. 


