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CONCERNING ADJUNCTIONS TO ALGEBRAS

BY J. L. DORROH*

In §3 of his paper, Algebras which do not possess a finite basis,t
J. H. M. Wedderburn gives a set of postulates and definitions for
an algebra. The question of the possibility of adjoining an iden-
tity to such an algebra arises. The purpose of the present paper
is to show that this adjunction is always possible.

It may be seen from the arguments that Theorems 1 and 2 re-
main true if the term algebra be replaced by one implying a set of
elements of which it is assumed only that it is an abelian group
under addition and a semi-group under multiplication.The proof
of Theorem 3 employs a distributive property, as will be in-
dicated.

THEOREM 1.1 If A is an algebra, then there exists an algebra B
which contains a proper, invariant subalgebra A’ isomorphic§
with A and an element I not in A’ such that, for every element b
of B, the relation Ib=>bI=> holds.

If x is an element of 4 and # is a positive rational integer,
let nx=xn denote the sum x+x+ -+ - +x (» summands) and
let (—n)x=x(—n) denote the same sum as n(—x). Let 0-x
=x-0=0.

Let B denote the set of all pairs (#, x) where % is a rational
integer and x is an element of 4. Suppose that (n, x) -+ (m, y)
= (n+m, x+y). Then B is an abelian group under addition. Let
(n, x) (m, v) = (nm, ny+mx+xy). Then B is an algebra and the
subset 4’ of B consisting of all the elements of B of the form
(0, x) is isomorphic with 4 and is invariant in B. Let I denote
the element (1, 0) of B; (1, 0) (», x) =(n, x) (1, 0) =(n, x) for
every # and x.

The multiplication in B is distributive, associative and distri-

butive, commutative, respectively, provided the same is true
for 4.

* National Research Fellow.

t Transactions of this Society, vol. 26 (1924), pp. 395-426.

I For a proof of this theorem for an algebra with a finite basis, see, for ex-
ample, L. E. Dickson, Algebras and their Arithmetics, 1923, p. 97.

§ In this paper isomorphism means simple isomorphism.
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THEOREM 2. If an algebra A has the properiies

(1) if x is an element of A and m is a positive rational integer,
A contains an element y such that my =x;

(2) #f x is an element of A and m is a positive rational integer
and x#0, we have mx #%0; then there exists an algebra B which con-
tains a proper, invariant subalgebra isomorphic with A and a pro-
per subalgebra isomorphic with the rational field.

If x is an element of 4 and m is a positive integer, it follows
from (1) that 4 contains an element y such my=x; let y be
denoted by x/m; it follows from (2) that x/m is unique.

If » isa rational number, let  =m /%, where m and # areintegers
and # is positive. Let »x =x7=m(x/n) for each element x of 4.
Then rx is unique, for suppose that m and » have been chosen
relatively prime and let 2 denote a positive integer, then
km(x/(kn)) =m(x/n), for kn[km(x/(kn))]=kmx=rkn[m(x/n)]
and the equality of the brackets follows from (2).

Let B denote the set of all pairs (», x) where 7 is a rational
number and x is an element of 4. Under the following rules for
addition and multiplication B is an algebra:

(1) (ry2) + (', o) = (r + 7,2 + ),
2) (r, )(v', &) = (v, 12’ + V' + xx).

The element (1, 0) of B is its identity, since we have (1, 0) (7, x)
=(r, x) = (r, %) (1, 0).

The set of all the elements of B of the form (0, x) is a proper,
invariant subalgebra of B and it is isomorphic with 4.

The set of all the elements of B of the form (7, 0) is a proper
subalgebra of B isomorphic with the rational field.

The multiplication in B is distributive, associative and dis-

tributive, commutative, respectively, provided the same is true
for A.

THEOREM 3. If A is an algebra subject to condition (2) of
Theorem 2, there exists an algebra B which contains a subalgebra
isomorphic with A and such that, if b is an element of B and n is
a positive rational integer, B contains a unique element ¢ such that
nc=>.

In the set D of all pairs (7, x), where 7 is a rational number and
x is an element of A4, (r, x) will be said to be equivalent to
(r', &) if svx=tux’, where r=s/t and ' =u/v, and where s, ¢, u
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and v are integers and ¢ and v are positive. This relation will be
denoted by (r, x)~(7’, x’). From the hypothesis concerning 4
it follows that the equivalence of (r, x) and (#/, ') is indepen-
dent of the choice of rational expressions for  and 7.

1) (r, x)~(r, x).

(2) If (r, x)~(r', x), then (', x")~(r, x).

3) If (r, x)~(', ") and (', ')~ (", x’'), then also (r, x)~
(r", x'). Let r=s/t, ¥'=u/v, v =p/q; s, t, u, v, p, q integers
and (>0, v>0, ¢>0. If svx=tux’ and wugx’=vpx’’, then
“svgx =tugx’ and tugx’ =tvpx’’; hence svgx =tvpx’’ and therefore
sqx=tpx'’.

Let (7, x)+ (7, ') = (1/(tv), svx+tux’), where r=s/t, ¥ =u/v;
s, ¢, u, v integers and ¢, v positive. If (#/, x’)~(»'’, x’’), then
(r, )+ (', & )~(r, x)+ ("', x'"). Let v’ =p/q; p, q integers
and ¢>0. Then (r, x)+ ("', x"') =(1/(¢q), sqx+ptx’’). By hypo-
thesis ugx’ =vpx’’. Hence we have tugx’=tvpx’’ and therefore
(1/(tvg), svqu+tuge’)~(1/(tvg), svqu+topx™), but (1/(tug),
sogx+tugx’)~(1/(tv), svx-+tux’) and (1/(tvg), svgx-+tvpx’’)
~(1/(tq), sqx+tpx’"). 1t follows that if (r, x)~(@"", x’"") and
(1", x’)N(f’/,, xl/)’ then (7’, x)+(r/, x’)N(l’”,, x"')—l—(r", xu).

Let (r, x)(#’, x")=(rr', xx’). Then if (', x")~(r"", x''),
(r,x)(r', x")~(r,x)(r"’,x’"). For by hypothesis ugx’ =vpx’’ and
hence ugxx’=vpxx'' (r=s/t, r'=u/v, r'' =p/q as before), and
hence* stugxx’ =stvpxx’’. Similarly (», x')(r, x)~(r"", x'") (r, ).
Hence if (r, x)~(""', x'’"), then (r, x)(z’, x")~(r""', x'"")
S %),

For each rational number w let w(r, x) = (r, x)w = (wr, x).

For each (7, x) of D let C(,,» denote the class of all pairs
(', x') of D such that (#’, x")~(r, x). Then C(y s =Cqpr o if,
and only if, (7, x)~(r"’, x’’). Let CroyF+Cir,ary=Cir 0y 10,2
and let Cir,5yC(r,5y =C(r,2(r,2).T These products and sums
are unique. For each rational number w let wC, » = [C(r,» |w
= Cw(r ,Z).

* To establish this equation and the corresponding one implied by the suc-
ceeding expressions in the text, it is sufficient to assume that if » is a positive
rational integer and x and y are elements of 4, then x(ny) =nxy and (ny)x
=n(yx). That this is a distributive property is seen from the definition of zy.

t For convenience the ordinary symbols for addition and multiplication
are retained, although the operations are not the ones they would ordinarily
indicate for classes.



88 W. 0. MENGE [February,

Let B denote the collection of all the classes C(,,. Then B
is an algebra. The subset A’ of B consisting of all the classes
Ca,x of B is isomorphic with 4 and is identical with B if, and
only if, for each element x of 4 and each positive rational integer
m, A contains an element x/m such that m(x/m) =x.

If C(r,» is an element of B and m is a positive rational integer,
then C(r/m,z is an element of B and mC(r/m,s = C(r -

Multiplication in B is associative, commutative, distributive,
respectively, if the same is true for 4.

PRINCETON UNIVERSITY

ON THE RANK OF THE PRODUCT OF CERTAIN
SQUARE MATRICES*

BY W. O. MENGE

1. Introduction. This paper presents several theorems which
were found during an investigation conducted by the author in-
to the structure of matrices which transform given matrices in-
to their so-called classic and rational canonical forms.t When
the elementary divisors of a given matrix are known, these
theorems completely determine the rank of a product of ma-
trices of the form

w
II — nnyie.
=1
An interesting proof of the Hamilton-Cayley theorem and a de-
termination of the equation of minimum degree satisfied by a
matrix are obtained from this point of view.

2. Invariant Factors. Consider the square matrix 4 = (as;) of
order » with constant elements. If the #-rowed identity matrix
be denoted by I, the characteristic matrix (4 —\I) is defined as
the matrix obtained by subtracting the variable N from each
principal diagonal element of 4. The determinant, D(\), of the
characteristic matrix (4 —\I) is called the characteristic de-

* Presented to the Society, December 30, 1930. The author wishes to ac-
knowledge his appreciation to J. A. Nyswander, University of Michigan, for
many helpful suggestions throughout the progress of the work.

t Dickson, Modern Algebraic Theory, Chap. 5.



