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THE GENERAL THEORY OF FACTORIAL SERIES*
BY TOMLINSON FORT

1. Introduction. The subject of this paper is factorial series,
a class of series which it seems to me are more interesting than
American mathematicians generally realize and which can be
made to play a most important part in analysis.

By a factorial series we shall understand a series of the form

e (n — P!
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where ¢, is a sequence of constants and z a complex variable.
The term is sometimes also made to include series in non-
inverted factorials or the so-called binomial-coefficient series.
I shall use the term only as applying to series (1) and at times
to certain generalizations of which I shall speak presently. The
terms of (1) are not defined when 2=0, —1, —2, - - .. Such
points will be understood throughout the paper as excepted
in all theorems, and neighborhoods of them in all theorems
relating to uniformity.

We notice the simple form of series (1), and comparison with
series of negative powers, co+2 weica(n—1)! 27", immediately
is suggested. We observe first that the terms of the series of
negative powers after the first, but for coefficient, come from
successive differentiations of 1/3. The terms of the factorial
series come from taking successive differences of 1/z. The
power series yields itself readily to differentiation and integra-
tion and certainly a large part of its usefulness in analysis comes
from this fact. The factorial series (1) is not so readily dif-
ferentiated or integrated. However,

o n!
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another factorial series of equally simple form, quite a parallel

* An address read before the Society, at the invitation of the program
committee, October 26, 1929.
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to the differentiation of the power series. The application of
the inverse operator, Y, is also immediate. We consequently
expect the factorial series to play an important role in that
portion of analysis in which these operations are prominent, as
for example in the theory of difference equations. We next
notice that, whereas the denominators in the power series are
successive integral powers of 2, in series (1) the successive
factors in the denominators, with the possible exception of a
finite number at first, increase in absolute value. Hence, we
expect series (1) to have certain rapidity of convergence features
not possessed by the power series. This is in reality true and
it is a fact that many functions asymptotic to divergent series
of negative powers or at most obtainable from them by indirect
summation methods are representable by convergent factorial
series. Itis this that gives to factorial series one of their greatest
elements of interest. Factorials are asymptotic to exponentials
and we expect the series to have properties in common with
Dirichlet series.

The form of series (1) is simple. This is what makes it
interesting. Generalizations will come to the mind of everyone.
Much has been done along this line; sometimes with particular
purposes in view and sometimes just to generalize. However,
most of the generalizations have sacrificed not only simplicity
but some useful property as well. Some generalizations that
have been made are as follows. These are not necessarily
fundamentally different but seem different in originating idea.

I. The series

d w0 1(n — 1)!

1 c .
) D P PO Ar
has been extensively studied by Norlund.* He has found it
useful for studying the function represented by a factorial
series.

II. Replace the sequence 0,1, 2,--- by a more general
sequence, so that (1) becomes

o )\1"')\n
2 + n :
) “ ,Eoz(z+>\1)-~(z+>\n)

* Acta Mathematica, vol. 37 (1914), pp. 327-87.
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This series, with various degrees of generality for the sequence
M., has been studied by a number of authors among them par-
ticularly Landau,* Pincherlet and myself.}

III. Replace each factor (z+£k) of the denominator by a
function Si(z), where

+b
Sl(z)=j:+d, (ad — cb # 0),
and
aSy b
Si(e) = @+ k> 1).

CSk_l(Z) + d ’

This has been done by Carmichael.§

IV. Replace the terms of (1) by certain general functions
so that the series will include both ordinary Dirichlet series
and factorial series. This was done by me a few years ago in
the Transactions.

V. Replace the terms of (1) by a certain general function
having asymptotic properties in common with the terms of (1).
This has been done by Carmichaell| in a series of papers.

VI. Replace the denominators in the terms of (1) by general
polynomials in 2 of successively ascending powers.

This was done at least by Appell** although only secondarily
as a generalization of factorial series.

VII. Replace series (1) by series of a general type where the
functions represented by the series can be represented by
Laplace'’s integral. This has been done by various authorstf
over a long period, although not necessarily aiming directly at

* Miinchener Berichte, vol. 36, pp. 151-218.
} Palermo Rendiconti, vol. 37, pp. 379-390.
t Transactions of this Society, vol. 31, pp. 233-240. For additional
references see Hilb and Szasz: Encyklopidie, Band 113, Heft 8, pp. 1268-1272.
§ American Journal of Mathematics, vol. 36 (1914), pp. 267.
9 Transactions of this Society, vol. 23, pp. 26-29.
|| Transactions of this Society, vol. 17 (1916), p. 207.
American Journal of Mathematics, vol. 39 (1917), p. 385.
American Journal of Mathematics, vol. 40 (1918), p. 113.
American Journal of Mathematics, vol. 42 (1920), p. 76.
This Bulletin, vol. 23 (1917), p. 407.
** Bulletin de la Société Mathématique de France, vols. 48, 51.
1t For example Landau, loc. cit., Nielson, Annales de 1'Ecole Normale
Supérieure, vol. 19 (1902), pp. 409-453; Pincherle, Bologna Rendiconti, vol.
8 (1904), pp. 5-13; Pincherle, Accademia dei Lincei Rendiconti 1902, pp.
140-141, etc.
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factorial series. I mention in particular Widder* who delivered
a paper before this Society, February, 1928, on this general topic.

I shall proceed to review briefly the present state of the theory
of series (1) and (2).

2. Convergence. For the saving of time, the history of con-
vergence theorems will not be traced in detail or completeness.

It is now classic and well known that the region of con-
vergence of (1) is a half-plane bounded by a line perpendicular
to the axis of reals. This theorem can be proved in various ways.
The same theorem holds for (2), if we put the following restric-
tionst on A,=a,+B.: an—+©, B./a,—0. In case \, ap-
proaches a limit, the region of convergence of (2) is bounded by
a circle.}

Pincherle§ considered (2), not requiring that 8,/a,—0 but
only that |arg .| <x<w/2 and that Y _11/ |\, | diverge and
> et/ P\n |2 converge. He proves that if (2) converges when
z=g, it converges at all points 2z such that (arg (z—20) |
=<w/2—x. He does not argue that this exhausts the region of
convergence.

However, as uniform convergence is of paramount interest
when we consider series, I shall pass to theorems on uniform
convergence.

Landau (loc. cit.) proved that (2) with A, real, \,—+ =,
converges uniformly over any finite region interior to its half-
plane of convergence. Writing in the Acta Mathematica,
Norlund (loc. cit.) proved that (1) converges uniformly over
any half-plane interior to its half-plane of convergence and
lying to the right of the axis of imaginaries, that is, if (1) con-
verges when 2 =x>0 it converges uniformly when R(2) = xo-}9,
8>0. In his book|| he states this same theorem without proof
and does not mention the restriction that the half-plane of uni-
form convergence lie to the right of the axis of imaginaries. The
method employed by Noérlund in the Acta Mathematica is by
a transformation which seems particular in character and not

* This Bulletin, vol. 34 (1928), p. 259.

t Schnee, Berliner Dissertation, Géttingen, 1908, p. 74 ff.
1 Jensen, Tidsskrift for Mathematik, 1884, p. 63-72.

§ Palermo Rendiconti, vol. 37 (1914), p. 379.

| Differenzenrechnung, p. 258.
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to apply to the more general series (2). Landau proved his
theorem by a lemma which on account of its great importance
in the theory of factorial series I shall now state. By means of
it all known theorems on the convergence of factorial series can
be proved, as well as the fundamental convergence theorems
for Dirichlet series, power series, etc. This lemma was proved
in various forms by Dedekind,* du Bois Reymondt and Cahen.}
To avoid repetition it is stated in general form for uniform con-
vergence.

LemMA 1. Hypotheses: (i) a.(z) and b.(2) are defined at all
points of a set R; (ii) D_w_1a.(2) converges uniformly over R;
(iii) there exists a fixed m and M such that Ibm(z)l
> m lAbn(z) f < M forall2's of R. Conclusion: Y n_,0,(2)b.(2)
converges uniformly over R.

By means of Lemma 1, I have been able to establish more
general theorems on uniform convergence than were previously
known.

In a recent paper,§ I proved the following theorem with
reference to series (2).

Restrict Nn=oa.+B:¢ as follows.  Require that o,— -+ 0,

»1(1/\,) diverge and that Y n_i(Bn/cts)? converge. Under these
restrictions, if (2) converges when z=2zo=2xo+yt, it converges
uniformly over any angular region defined by x=x0 and
Iy—-yoléa(x——xo) ™, m any positive integer and a any positive
number.

Under these same restrictions on \,, I am now able not only
to extend Norlund’s theorem of the half-plane of uniform con-
vergence to series (2), which I was not able to do at that time,
but to rid the theorem of the unnatural restriction that the half-
plane of uniform convergence lie wholly to the right of the axis
of imaginaries.

Let us suppose the series to converge when z=32¢=x¢+yot.

* Zahlentheorie, 2d ed., p. 373.

t Newue Lehrsatz iiber die Summen unendlicher Reihen, Auftrittsprogramm,
1870, p. 10.

1 Annales de I’Ecole Normale Supérieure, vol. 8, p. 79.

§ Transactions of this Society, vol. 31 (1929), p. 233.
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Let 21 =x:+ 12 be fixed and such that x; >x,, and let 2’ =x"+y'¢
be a variable, and require that x’=x;. Let

) SRR W

a,(2) = ¢n )
(30 + M) - - - (20 + M)
and
(20 + N1 - - - (30 + Na)
b,,(Zo,Z) = :
(Z+)\1)<z+)\n)
We find that

Aba(20,2") B~ 2 a4+ M [(21 +N) (- )\n+l):|
Abn(ZO,Zl) 20 — 21 Z’ + )\1 (Z/ + A2) e (Z/ + An.{_l) ’

but [(zo—2")/(zo—2) |[(z1+N1) /(8" +N)], as a function of z’,
remains finite over the half-plane x’=x;. The expression in
the bracket is b,(z1, 2’) if the series Ay, - - -, N\, be replaced by
Ne, -+, Mg I proved in the Transactions paper just referred
to that this remains uniformly finite over the region in question
from which neighborhoods of those points —\z, —X;, - - - which
lie in it have been removed. Hence, owing to the convergence of

et ]Abn(zo, 21) |, as also established in my Transactions paper,
we see that D o_i|Ab.(2, ') | converges uniformly over the
half-plane x’=x,. Moreover, b,(2,, 2’) remains finite over this
half-plane. Hence, by the lemma, (2) converges uniformly over
the half-plane x=x;, and Norlund’s theorem is extended to this
more general series.

This theorem with the theorem quoted from my paper of
last April seems to settle in a reasonably satisfactory way the
question of uniform convergence for (1), and (2) with A, re-
stricted as indicated. It is to be noticed that the last theorem
does not entirely replace the first.

The restriction that Y %_1(1/\,) diverge is a natural one, for in
the contrary case it can be readily proved* that (2) either con-
verges at all points or diverges at all points. The points —A;,
—N\g, -+ - -are, of course, excepted here as elsewhere in the paper.

If we do not impose the restriction that Y = _1(8./a,)? con-
verge but in its place only require that 3,/a,—0, the best that I
have been able to do for a region of uniform convergence is
the result given in my paper of last April, namely, the familiar
angular region determined by x=x¢ and |y—yo | <a(x—xo).

* Schnee, loc. cit.
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3. Summability. The summability according to the Cesiro-
Holder method of series (1), that is, the simple factorial series,
was treated by Bohr.* His method of proof is by a generaliza-
tion of Lemma 1. He finds that there exists an abscissa of
summability analogous to the abscissa of convergence and he
proves the series uniformly summable over any finite region
within its corresponding half-plane of summability. A some-
what similar line of attack can be applied to the more general
series (2) for summability by Riesz weighted means. I proceed
to do this.

I define summation by Riesz weighted means as follows.
Given .30 @, and Ay, Ay, - - -. Let o,=2 +1(1/\,) and

Sn =Zn=0 a,; and let
o]
sn .
xn+1

If 5,® approaches a limit, that limit will be called the sum of
order 1 of Y _%_; a, by Riesz means weighted according to the
sequence 1/XN,. The method clearly can be iterated to the rth
order. I treat first only the sum of order 1. To do this I
generalize Lemma 1.

LEMMA 2. Hypotheses: (i) a.(z) and b.(3) are defined at all
points of a set R.
(i) The sum

It 1 1 1
Sn = —so +—s1+ -+

gyl Ag

n 1 n
>

n=0

1
sn(2) =

an(z)

Ont1 ntl  n=

approaches a limit uniformly over R when n— o,
(iii) The quantity

1 n
| bara(®) | + = 2| Abara(2) || o |

| o'n-l-ll n=0

1 kid Ao
3 + 5 12| 0@ | o]

l a'n+1l n=0 n+1

1 n n
+ > | ANy 180a(3) | | Gapr |
| oner] ac0 | Maa| 220

remains uniformly finite over R.

* Gottinger Nachrichten, 1909, p. 247.
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Conclusion: Y n_o an(2)bn(8) is uniformly summable of order 1
over R by this method.

This lemma is readily proved if we apply summation by parts
twice to
1 o1

> Ta@bd.

Opntl  n=0 )\n+1 n=0

It will be applied to series (2), where we again impose the
restrictions on Ay =, +Bnt, an—+ o, ) _%_1(1/\,) diverges and
D %-1(Bn/cn)? converges. I have proved the following theorem
under these hypotheses.

If (2) is summable of order 1 at zo=x0+7yot, it is uniformly
summable of order 1 throughout an angular region defined by
x=xo and Iy—yo [ <m(x—xo), where m is any positive constant.

The principal steps only in the proof will be given.
We assume x>0 and «; >0 which entails no loss of generality.
Let bo(2) =1, and when >0,

(Zo+>\1)"'(zo+)\n)
4+ M) 3+ )

bn(2) = bn(20,2) =

Let ao(2) =c¢o, and when n >0,

A A
”(Zo+)\1)"'(zo+)\n).

a.(2) = ¢

Substitute in formula (3). We wish to prove that the resulting
expression remains less than a constant. To show this we take
the ratio of each summand in (3) to the corresponding summand
with 2z replaced by its real part x, and N, replaced by its real
part o, and ¢n1 by Tapi=2 #fi(1/a,). Each of these ratios
remains less than a constant. I refer to Preliminary Theorems
1 and 2 of my own paper (Transactions of this Society, vol. 31
(1929), p. 233), only remarking that

AN 180,(20,2) = (20 — 2)Abny1(20,2).

Moreover we have
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1

Z I Abﬂ+1(x0)x) l Tntl
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+

M-

I Ab,.+1(xo,x) I Tntl
Tnt1

3
I
-3

Qpi1

1 "1
+
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3
]
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1
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1
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+
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1 1

Z anbﬂ(xﬂax)) (kO = 17 ky = 0),

Ta+tl =n=0 Onil n=0

when n>0; that is, the k,’s are the coefficients of that series
(2) for which s®(xg) =1, which is the series for which
1 n n
2. V(x) =1; —— Z Zk,.b,.(xo,x) =1;

Tutl n=0 Onil n=0

and our theorem follows by Lemma 2.

There is a half-plane of summability in every way analogous to
the half-plane of convergence. This theorem follows from the
preceding as in the corresponding case for convergence.

The generalization of Lemma 2 to a weighted sum of any fixed
number of iterations is straightforward. The formulas, however,
are increasingly complicated. When we come to apply these
lemmas to factorial series, I find a difficulty in proving that the
ratio of each summand in 2z and A, to the corresponding sum-
mand in x and «, remains uniformly finite. I find that I must
assume in addition to the assumption already made that
Aet1/MNn remains finite and that A(N\.41/M.)—0 and that
x—x9>0>0. I am then able to establish theorems for rth order
summation by weighted means analogous to those just proved
for first order summation by weighted means, namely uniform
summation over an angular region bounded by straight lines
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from which the half-plane of summation follows. The additional
assumptions on A, and the assumption (x —x,) > 8 are probably
incident to the method of proof. Lines of summability follow
immediately.

It is to be noticed, however, that all these results are more
general than those of Bohr (loc. cit.) even for the simple series
(1) which he treats and the Cesaro-Hélder method which he
uses. He only proves uniform summability over a finite region
and he retains the restriction x —x,>9.

4. Equiconvergence Theorems. Landau (loc. cit.) proved in
his classical memoir that series (1) and the ordinary Dirichlet
series

(4) Z can?,
n=1

where the coefficients are the same, converge at the same points.
Kluyver* had already proved a similar theorem for absolute
convergence.

In the Transactions of this Society for January, 1922, I set up
the series

) e k T'(nk) .P(z + k) .
w1 2+ k—1T0(z+4+ nk) T(k)

This series reduces to the ordinary factorial series for k=1
and has the ordinary Dirichlet series (4) as a limiting series
when k—o. Itis found that by placing only slight restriction
on k we have a wide class of series including the limiting case
(Dirichlet series) for which the equiconvergence theorem holds.
That is, (5) converges at the same points for the values of &
including the limiting case where k— .

Pincherle (loc. cit.) proved (2) and

LI |

=1 )\n ’

equiconvergent provided,among other restrictions,) .—(1/ l)\”l)z,
converges. In my paper in the Transactions of April, I removed
all restrictions on \, except that Y _.—,(1/\,)**! be convergent

and proved an equiconvergence theorem for (2) and for the
series Y, iC.e~%, where

0
Zc,,e“""z y  Op =
n=1 n

* Nieuw Archiv, (2), vol. 4 (1899), p. 74.
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g "1 1
n = —_— — 2 .. .__1 s—1 LI
8 (é M)z <2=31 m>z o+ (=D <§ x,:>z

In another theorem in the same paper I proved that, if A\, is
real, A,—+o and D o.i(1/\,) diverges, then (2) and the
Dirichlet series, D5 _1626— 02,0, = __1(1/\,), have the same line
of convergence. The location of the lines of convergence is now
given by the familiar formulas for Dirichlet series.

Equisummability theorems analogous to the above for sum-
mation by weighted means hold at least if we put the restric-
tions of §4 on N,. Bohr (loc. cit.) has results for the simple
factorial series (1) and the ordinary Dirichlet series using the
Cesaro-Holder summation method.

5. Function Represented. The question of the nature of the
function representable by a class of series and how to obtain
this representation is one of the most interesting questions in
the study of series.

I have already remarked that if Q(z) is the function repre-
sented by (1), then

© |

AQ(z) = — Zc,, i .
o1 2(z4+1) (34 n)
In order for the series to be of much use in the study of difference
equations it is necessary to prove other theorems relative to
algebraic operations with factorial series and to uniqueness of
representation in factorial series. These necessary theorems have
been handled principally by Norlund (loc. cit.). The uniqueness
theorem, so important in work of this kind, does not hold for
the binomial coefficient series, as was shown by Pincherle,* and
this fact robs that series of much interest which attaches to
factorial series. It would be interesting to investigate the situ-
ation as regards these useful theorems for series (2). This does
not seem to have been done.

That Q(z) is analytic over a region of uniform convergence is
immediate. This does not include the point «, of course,
which is not within the region of uniform convergence. There
are poles at each of the points —\;, —\g, - - -, which lie within
the region of convergence. The line of convergence differs from

* Atti, Accademia dei Lincei, Rendiconti, (5), vol. 2, pp. 417-426.
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the circle of convergence of a power series in that no singular
point need necessarily lie upon it. As a matter of fact Norlund
(loc. cit., p. 374) has shown that if we consider series (1°) there
is a line, x =1, which is approached by a, the abscissa of con-
vergence, when w—0. We write a(w). This line is characteristic
of the function which ceases to be analytic at all points, or at
least does not remain finite, within the band /—e<x=<Il4¢€ no
matter how small €>0 may be.

Norlund has shown (loc. cit., p. 347) that the behavior of
Q as z—© remaining in the half-plane of convergence is given
by the following formulas:

lim Q(z) = ¢,

lim 2Q(2) = ¢4,

lim (z + 1) [2Q(2) — ¢1] = ¢,

lim (z + 2) [z + D {20(2) — a1}] = &5,

These relations seem to give a proper description of the
asymptotic behavior of the function.

Watson* has written a long paper in which his thesis is to
prove that functions asymptotic to divergent power series in
the sense of Poincaré,

ai as
f(=®) ~at+—+—+
X X

can be represented by a convergent factorial series. He succeeds

in establishing some very general theorems. These theorems

are a little long in statement and are not given in detail.
Norlund (loc. cit., p. 379) proves that functions represented

by divergent power series of the form

a

Gt
2

2
summed by Borel’s integral definition can be represented by
convergent factorial series.

Necessary and sufficient conditions that a function be repre-

* Palermo Rendiconti, vol. 34 (1912), p. 41.






