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GRASSMANN'S PROJECTIVE GEOMETRY, VOLUME II 

Projektive Geometrie der Ebene unter Benutzung der Punktrechnung. Vol­
ume II: Ternares. Part 1. By Hermann Grassmann. Leipzig und Ber­
lin, B. G. Teubner, 1913. xii+410 pp. 

Projektive Geometrie der Ebene unter Benutzung der Punktrechnung, Volume 
II: Ternàres, Part 2. By Hermann Grassmann. Leipzig und Berlin. 
B. G. Teubner, 1927. xvi+522 pp. 
The first volume of this work was published in 1909 and reviewed in 

this Bulletin (1913) by L. W. Dowling. The first part of the second volume 
appeared in 1913, but, owing to the world war, the volume was not com­
pleted before December 1921, when the finished second part was deposited 
as manuscript in the author's desk. Hermann Grassmann, Jr. died the fol­
lowing month, Jan. 21, 1922. One of his students, G. Wolff in Hannover, 
took charge of the publication of this second part, but owing to financial 
difficulties the work did not appear before 1927. Among those giving fi­
nancial aid we note our own E. Carus. 

The first part, which has four chapters (Hauptteile), introduces us to 
the ternary field of projective geometry. A point x in the plane is given 
by the equation x = ^ 1 + ^ 2 + ^ 3 , where ei, e^ ez are the vertices of the 
fundamental triangle; £1, £2, £3, the "Ableitszahlen," may be considered as 
the Grassmann coordinates of the point x. The dual of the point is the 
"stab," or directed line-segment which is bound to the line on which it 
lies, in the sense that it can only be carried along the line in its own direc­
tion or in the opposite direction. Any stab U in the plane is represented by 
the equation U *=UiEi-\-U2E2-\-UzEz, where uh u%, u% are the Grassmann 
line-coordinates and £1, E2, Ez are "stabe" on the lines joining the funda­
mental points, or "grundstabe," defined by the equations Ei~[e2es], 
E% — [ezei]t Ez — [eie2], The unit point e, mass m, is now defined as a point 
with coordinates (1, 1, 1), so that e = ei-\-e2

Jrez\ the masses Wi, m2, W3 may 
be so chosen that the exterior three-point product [tfi^s] — 1 (blatteinheit). 
Dually we have a unit "stab" of length / such that E-E1+E2+E3 and 
\E\E%EZ ] « \e\e2ez ] = 1. It is then shown that the ratios £1 : £2 • £3 and ux : u2 : w8 

may be geometrically interpreted as double ratios 

£2 P^.P^ J* __ Pz.P^ J i _ £}.P^ 
Tz^pi'T/ ^"P7'P/ T2~hrp/ 

where pi, pi, pz are the distances of the point x from the sides of the funda­
mental triangle, and pi, pi, pz those of the unit point e from the same sides 
respectively. Dually we obtain for the ratios ui : u2 : us the values 

25 _ Ü2..ÜL 25 _ Sl'îL 25 — ^I'^l 
uz q%'qj «1 qz'qi u2 qi'q%' 

<Lh 32, 33 being the lengths of the perpendiculars from the vertices eh e2f et 
on the stab U, and qi, q2, qi those of the perpendiculars from the same 
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three vertices on the unit stab E, By letting Ez recede to infinity the author 
obtains the Hessian coordinate system familiar to students of Clebsch-
Lindemann. The chapter concludes with a section on the harmonic rela­
tions in the quadrilateral-quadrangular configuration. 

The Grassmann algorithm when applied to projective geometry does 
not however produce a pure coordinate geometry. The coordinates & and 
u% are used in proving certain important formulas involving exterior and 
combinatory products, and the geometric and projective properties are 
then derived from the interpretation of these formulas; in other words, 
direct analysis is employed as far as possible. That coordinates cannot be 
entirely dispensed with seems to substantiate Study's dictum, at least in 
this case, that "without coordinates there is no geometry." 

The second chapter deals with the fundamental properties of collinea-
tions, their double-elements and certain combinatory products of two and 
three collineations. A collineation k is defined by the symbolic or "exten­
sive * fraction 

01,02,03 
k = ; 

01,02,03 
which means that eik=ax, e^k—a^, ezk=*a9f and that (£i0i+£202+£303)& 
= £101 +£2^2+£3^3, or xk =;y; to the vertices 01, 02, 03 of the fundamental tri­
angle correspond the vertices a\, #2, #3 of another triangle. Any point-row 
y+hz is transformed into a point-row yk+hkz = (£I+/^I)ÖI + (£2+^2)02 
+ (£3+^3)0*, and the double-ratio of four points x, y, z, u on a line is in­
variant. 

Closely related to the collineation k is the so-called adjoint collineation 
Ai1A2,Az 
E\,E2,E% 

which is a line-to-line transformation (Stab-Stab Abbildung) carrying a 
stab U into another stab UK, that is J7=]£ #»•£»• is transformed into 
F=]£w»i4i, where £1 = [0203], £2 = [030i], Ez^[eie2]f Ai = [a2as]t A2-[azai], 
4 3 = [0102]. From the equation [x, U] =0, which means that x is on U, it 
follows that [xk, UK] = 0, that is, the transform xk of the point x by k is on 
the transform UK of U by K. 

If k and / are two collineations, the combinatory product [kl] is defined 
as follows: 

[yz-kl] [yk-zl] - [zk-yl] 
(1) [kl] = ~M Ï R — ' 
the right side of which is shown not to depend on the two points y and z ; 
hence the symbol [kl] is justified. If then in (1) we put y = 01, z = e2; y = 02, 
z~e%\ y=e3, z=ei in succession, it is easily seen that [kl] may be put in 
the form of an extensive fraction 

r -I _ [0203'kl], [e30i• kl], [eie2• kl] 

[0203], [0301], [0102] 

If k —I, we have [k2] **K, an important formula. 
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The combinatory product of three collineations is denned thus: 

[xk • yl - zm] + [yk • zl • xm] + [zk • xl • ym] 

r t t -, [xyz-klm] — [xk-zl-ym] — [yk-xm-zl] — [zk-ym-xl] 
(2) [klm] = -M 6H ' 
and it is shown that the fraction on the right side does not depend on the 
points x, y, z, only on the numerators a%, k, a of the extended fractions 
k, I and m. If k —l — mf we have the combinatory cube 

r n [#10203 ] \e^k' e^k' e^k J 
L* J * ~ r — r * — F — ï — 

which is another fundamental formula. The author then proceeds to classify 
the various singular collineations, namely those for which [&3]=0: 

1. [aia2a3] =0, at least one of the products [#»•#&] being different from zero. 
2. [aia2a3l =0, all the products [aidk] vanishing. 
3. [aia2a3] =0, all three a's vanishing. 
Starting with the adjoint K and the adjoint to K, denoted by k, 

[E2Es]f[E,E1]1[E1E2] 
and introducing the combinatory product [Kl] of two stab-stab collinea­
tions, he proves that [K2]=~k=ak, where a = [aia2a3] = [^3]. The com­
binatory product [KLM] is then defined in a manner analogous to that 
for [klm] and an expression for [K3] is obtained, viz.: [Kz] — [AI^^] 
= [aia2a3]=a. A classification of singular stab-stab collineations then 
follows, dual to the above for point-collineations. 

It appears here, as elsewhere throughout the work, that the author 
discusses the dual case in detail instead of merely stating the result, applying 
the principle of duality, as is usually done, in projective geometry. This 
tends to increase materially the number of calculations and becomes 
wearisome in the long run, but the elementary student who attacks the 
subject for the first time via Grassmann will perhaps be satisfied, as he is 
saved the trouble of proving the dual case. It is all "cut and dry." In 
the second part of the volume he sometimes, but not often, omits the calcu­
lation. 

The double elements of the collineation are obtained starting with the 
condition dtk=rtdt where dt is a point and rt a pure number. The question 
is then: What point, or points dt are left in situ in a collineation k, the point 
dt changing at most its mass which is multiplied by a number n? The 
answer to this question leads to a cubic equation having ri, r2, r3 for roots. 
This is the characteristic equation. We are thus led to a collineation 

ridi,r2d2,ndz 
k — ; 

d\, dif d% being the fundamental triangle. The dual case, which is carried 
out in detail, gives rise to the stab-stab collineation 

rin [didi ], nri [dzdi ], nf2 [̂ 1̂ 2 ] 
K = [didz ], [dzdi J, [d\di J 
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The various subcases are then considered, the result being a slightly modi­
fied form of the classification found in Veblen and Young's treatise, vol. I, 
pp. 271-276. I t may be noted in this connection tha t Grassmann needs 
25 pages to exhaust the subject of double elements and types of collinea-
tions, while Veblen and Young need only 5 pages. This is not due to a 
more complicated algorithm, for the calculations in Grassmann are simple, 
and the geometry can be read from the symbolic equations without diffi­
culty, but rather to a more detailed consideration of the geometry involved. 
In this respect the method of Grassmann is carried out very carefully; he 
never forgets tha t he is a geometer. 

The last section (29) of this chapter deals with the geometric meaning 
of the vanishing of the combinatory product [klm] which was defined 
above, (eq. 2). If l=*nt we get the product [kll] = 0 or 

(3) [xkyz] + [ykzx] + [zkxy] = 0. 

If (3) is satisfied the collineation has an inscribed triangular position. 
This theorem is due to Pasch. A few more theorems of a similar kind then 
follow. The remainder of the chapter deals with point-triples. The locus 
of points x such tha t the two pencils xabc and xa'b'c' are in involution is 
a cubic called the cubic of involution; the special case when this cubic 
degenerates into three lines, i.e. when a, b, c and a', b', c' are collinear 
point triples is then considered, and a number of theorems on point-triples 
are deduced. 

In the sixth chapter the author considers first correlations in the plane 
and then the more special polarities with their pole-curves of the second 
order and class. He sets up the extensive fractions for correlations and 
and polarities together with a number of combinatory products of two and 
three correlations (polarities). Starting with these formulas, the remaining 
part of the chapter is devoted to the consideration of poles and polars, the 
polar triangle, curves (that is pole-curves) of the second order and class, etc. 
The discussion of singular or "entartete" systems of polarity occupies 
about 30 pages, and the various forms of conies, considered as point-loci 
and stab-loci and depending on the various positions of their polar tri­
angles, another 57 pages. The last section deals with conies in Cartesian 
point-coordinates (oblique axes) and Hessian line-coordinates, one side 
of the polar triangle being at infinity. The last, but not the least interesting, 
chapter deals with the theory of pencils of conies and their duals, ranges of 
conies. We shall not give an account of the various cases considered. The 
work is done with meticulous care, and the dual case (ranges) is treated 
in detail. The author finds no place for a discussion of group-properties 
of collineations, correlations and polarities, although in the first volume 
he did consider the product (folgeprodukt) kl of two projectivities in the 
binary field. The notion of an invariant, as well as invariant configurations 
connected with the various subgroups of projective transformations, is 
also absent. Nevertheless, the first part of this volume is a decided success 
from the standpoint of the Grassmann point-calculus; he no doubt had two 
main objects in view: To write a projective geometry based on the 
Grassmann point-calculus, and to make it a magisterial work that a 
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student can easily master. Any mathematician who has found the elder 
Grassmann's presentation of his point-calculus, such as is found in Grass-
mann's Ausdehnungslehre of 1862 rather "abschreckend" will be pleasingly 
surprised a t the ease with which the calculus can be mastered when pre­
sented in a masterly way. 

The second part begins with a section on the projective geometry 
on a curve of the second order and class. Involutions on a conic are care­
fully considered and a following short section deals with the equianhar-
monic projectivities. 

In the next chapter the author turns to the consideration of range-
pencils and pencil-ranges of conies. Special cases are considered such as 
homo-asymptotic hyperbolas and ellipses. All collineations are then found 
that leave pencil-ranges invariant, and incidentally also the collineations 
which transform a conic into itself. The general theory of reciprocities 
(correlations) is treated in the remainder of the chapter. Let 

AltA2lAB 01,02,03 
r = , j£ _ r2 -

61,02,03 EUE2,E3 

be a reciprocity and its adjoint. If [ i l i ^ -ds ] F^O, and [01O2O3] T^O, we have 
also the inverse 

1 _ 01,02,03 1 _ EuE2,Ez^ 

r Ai,A2,A3 R 01,02,03' 

for the special case of polarity we have r — a/R, a = [010203]. The curves 
[#*a r ]=0 , and [if- UR]—0 are called the nuclei of the reciprocity. The 
first expresses the condition tha t a point shall lie on the corresponding 
line, and the second equation that the line U shall pass through the cor­
responding point. These curves are also called respectively the pole-curve 
and the polar curve. The reciprocity conjugate to r is 

, _ A{ ,Ai ,AJ _ a 

01,02,03 R 

where Ai — auEiJra2iE2
Jraz%Ez. A null-system of the second order is one 

for which o « = 0 , 0»-* = — au, and for a null-system of the second class we 
have Au—O, Aik~ —Aki, the ^4»* being the minors of the determinant 
10110220331. A reciprocity of this kind may be put in the form 

[oei], [002], [oe3] 
n = ; 

01,02,03 

in which o stands for the null-point of the reciprocity. Dually we get 

v [AE1],[AE2],[AE,] 

Ei, E2, £3 

where A is the null-axis of the reciprocity. Of these two singular correla­
tions, the one carries a point x into a line nx joining x to the null-point a 
so that the pole-curve becomes a double point o, and the second carries a 
line U into the point of intersection of the line with the null-axis, i.e. A, 
as a double line, is the polar curve. 
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The author then discusses conjugate and adjoint reciprocities and the 
relative positions of their nuclei. Although for a reciprocity, which is not 
a polarity, we must always have r^r', the equality cr — cr' may be satis­
fied for a special point. This point is shown to have the coordinates 
cr.C2:c3==a23--a32'a3i—ai3:ai2—a2i and is called the "kernpunkt" of 
the reciprocity, and dually, for the coordinates of the "kerngerade" 
C\\Ci\Cz=zAi%—Az\\AVL—A\.%\A\<lt--Ai1\, and he proves that the "kern-
punkt" of a reciprocity is the pole of the "kerngerade" with respect to both 
nuclei of the reciprocity. 

In the tenth and eleventh chapters the author takes up the subject of 
apolarity. He derives the condition for apolarity of two reciprocities in 
the form 

(4) [rS] = JT^ri [xr-XS] + [yr- YS] + [zr-ZS]\ - 0, 

where 
X = \yz], y = H , Z = [xy], S = [st]. 

If in this equation we put e,-r=^4t- and EiS — bif x—e^ y = t2y «=e3, 
X~Ei , F = E2, £ = £ 3 , the condition [rS]=0 takes the well known form 

#11-#11 - { - • • • + (#23#23 + #32#32) + ' " * = 0> 

and when r and S are two polar systems p and Q, #ii#n-l- • • • -f 2a23#23 
+ 0. 

In Chapter XI the author introduces two new symbolic expressions, the 
Liickenform and the Potenzform. We shall not try to give English equiva­
lents for these terms; lacunar y forms would perhaps do for the first term, 
but power form does not sound well, and we shall therefore use the German 
terms throughout. Suppose we have a polarity of the second order 

AuA2}Az 
p = f 

ei}e2,es 

where Ai^^atkEk and aik — au', then if # = £1̂ 1+£2̂ 2+£303, we have the 
polar xp = ^ 1 + ^ 2 + ^ 3 . Multiplying x exteriorly by Eh E2t E* we get 
[xEi] =£1, [xE2] =£2, [xE$\ =£3 and the polar xp becomes 

xp = [xEi]Ai + [xE2]A2 + [xEz]Az = £ M * K - , 

and the quadratic form [#-a#] is represented by the expression 

[x-xp] = [xEilMx] + [*£2]M2] + M 3 ] M 3 ] « E M i l M f ] . 
1 

Since x occurs twice in each term on the right side, we may, if we wish, put 
x2 outside and fill in the spaces left vacant by a letter / (Lticke:lacuna) so 
that the quadratic form is written, 

(5) [x-xp] = {[lEjllAx] + [lE2][lA2] +[lEi][lAt]}x* »£[/£<][M<]* f. 
1 

The factor of x2 is called a "Liickenform" of the second order; the small 
letter I in the expression means that the space is to be filled in by a point 
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such as x, y, etc.; / is therefore so to speak "the ghost of a departed point." 
We denote the lückenform by the letter A2 and write 

A 2 = X)ft&][M<] 
l 

and, introducing for the ^4's their values YlaikEk, w e have 

A2 = au[/Ei]2 + a22[/E2]
2 + azz[lEz]2 

+ 2a2S[lE2][lEd] + 2azi[lEx][lEz] + 2ai2[/E1][/E2j 

and [#-xp]=A2x2, so that A2x
2~0 becomes the equation of the polecurve. 

In the same way we have for the bilinear form [:y*#£]=]03^»][*^U]; 
but, since for any polarity we have the fundamental equation [y#/>] 
^[x-yp], we have 

[*-yPl-b-»]-±[**]bAt]1;b*][xA,\ 
i 2 

so that we may write 
r j j r *i A TTIIVUIAV \ [%Ei][yAj] + \yEj][xAil [x-ypl = ly-xpl = Asxy = l*[lEi\[lAi\\yx\ « 

= A2yx\ 

xy is an algebraic product since A2xy =*A2yx. 
It is important to note that each term of (5) is a product of two factors 

which may be considered as lacunary forms of the first order and the pro­
duct is not changed by interchanging the factors; the product [xJSi][x^4i], 
for example, vanishes whenever the point is on the line-pair containing the 
stâbe Ei and A\} and in the case of the quadratic terms the line-pair be­
comes a double line. We may therefore say that the products in the sepa­
rate terms of the lückenform (5) represent line-pairs, considered as redu­
cible curves of the second order. In order to simplify the expression we 
leave out the Vs and the brackets; the remaining stab-factors Ei,Ai, • • • we 
combine into products EiAh E2A2, • • • of the algebraic kind, since the 
original products were algebraic just as the product xy. The new expression 
for the sum of such factors we shall call a potenzfortn of the second order 
and denote it by the symbol AW so that 

3 

AW = Y,EiAi = an£i2+ a22£22+ a&Ei2 + 2a2iEsE2 + 2anEiEi + 2anE2Eit 
l 

and this potenzform shall henceforth mean precisely what is expressed by 
the equation A2x

2 =0, that is, a curve of the second order. The quantities 
Ei, 2E2,

2Ez,2E2Eif E3E1, E1E2 are the six units of the second order. Conversely, 
the lückenform may easily be constructed, the potenzform being given. 
Moreover, if we want the curve itself from the potenzform, all we have to 
do is to substitute for the fundamental stâbe Et, E2, E3 the coordinates 
£11 £2, £3. Thus the potenzform a23E2E3+a3iE3Ei+#i2EiE2 represents the 
curve of the second order a23£2£3 +0*i(»£i +UI 2£I£ 2=0 which is circumscribed 
about the fundamental triangle; the lückenform is 

028^] [/E3] + Osit/EsK/Ex] + ai2[/Ei][/E2]. 
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In the dual case, starting with a polarity of the second class, we obtain 
a ternary ltickenform of the second class 

A2 = foL][oiL] + [e2L][a2L] + [*L][a^,] = E[*Jk][o<L] 

or, introducing the values a»=2^*&e*> Aik — Aki, 

A2 - An[eiL]* + A22[e2L]2 + Azz\ezL\2 + 2A%2\e%h\\e2L\ 

+ 2A31[e3L][eiL] -f 2Al2[e2L][eiL\ 

and the polar curve of the polarity P has the equation a2U
2 = 0. Two lines 

U and V are conjugate when the bilinear form a2UV = 0. The potenzform 
corresponding to the ltickenform of the second class is now 

AW = AneX + ^22^2 4" ^3303 + 2^32^2 + 2^31^361/ + 2,4120102, 

which represents the curve a2£/2 = 0. The most general potenzform of the 
second class is derived from the six units of the second class, viz. : ei2, e2

2
t 

es2, e2ez, e%e\, e\e2, and the polar curve may be obtained from it by substi­
tuting et for u% in the equation of a conic of the second class. 

The combinatory product of a potenzform of the second order and a 
potenzform of the second class is now defined as follows: [A&b<2)] —A2b<2> 
and [bWAW]=b2A(2\ that is, we put the combinatory product equal to 
the product obtained by substituting for the first potenzform the corre­
sponding lückenform and consider the extensive factor of the second po­
tenzform as "filling in" factor intended for the lacunae of the ltickenform. 
The following theorem is then proved: The combinatory product [A^b™] 
vanishes when, and only when, the two potenzformen are apolar. There is 
however a "fly in the ointment" right here. This elaborate preparation 
of an algorithm to express the apolarity of two polar systems is not appli­
cable to non-involutary or general reciprocities. We have to go back to the 
former condition [r5]=0, equation (4). 

In the remainder of the chapter special cases of apolarity are given and 
two theorems of von Staudt on polar triangles and quadrilaterals are 
proved. 

In our journey through 950 pages of this treatise of 1250 pages we have 
met with the cubic only once, the cubic of involution mentioned above. 
It is therefore a pleasant relief when the author in the following Chapters 
XII and XIII allows us to renew our old acquaintances, the curves of the 
third order and class, although in a stranger garb. A ltickenform of the third 
order is written 

Az = am[lEl]
l + • • • + SamllEifilE,] + • • • + Om[lE*][lE*][lE*\ + • • ' . 

and a ltickenform of the third class 

a3 = Am[eiL]z+ • • • + 3Am[e1L]2[e2L] + • • ' + 3Am[eiL][e2L][ezL] + 

the corresponding curves of the third order and the third class being 

Azx* » { Y^ai*[lEi][lEh][lE.])x* = 0, 
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Several familiar theorems on polars of a cubic are then proved. The Hessian 
of a cubic is expressed by the vanishing of a combinatory product of three 
lacunary forms Hzz

z = [A zzei • A zze<t • A zzez ], where Hz = [A ZU\ • A zle% • A 3/e8 ] 
is a ternary lückenform of the third order. The Hessian of a curve of the 
third class is represented as a combinatory product of three liickenformen of 
the third class in the form h8W3 = [aiWEi >azWE2 • azWEz] =0. The Grass-
mann point-calculus seems to be well adapted to a careful treatment of the 
inflectional tangents to a cubic, and the author takes special care in his 
discussion of the real and imaginary configurations connected with these 
tangents. The same care is also taken with the dual configuration of the 
9 cuspidal tangents to the cubic of the third class. 

Chapter XIV deals with nets of conies and their duals, webs of conies. 
The chapter ends with a section on domains of polarity, and a final section 
on the Cayleyan curve of a net (web). In the last two chapters metrical 
properties of conies and their relation to the circular points at infinity 
are considered. Oblique and rectangular axes are used in turn, and a host 
of special theorems are produced. The projective properties of some special 
nets and webs of conies are given due consideration in the last chapter. 

As a magisterial work the Projective Geometry of H. Grassmann, Jr. 
takes a high rank. Although somewhat diffuse at times, it is a marvel of 
painstaking care and exactitude. It is singularly free from missprints. On 
page 145, (vol. 2, Part 2) sixth line from bottom, the words Mer Ableits-
zahlen" should be inserted after the word "Funktionen." On p. 284, line 
19 from above, the word "und 789 " should be inserted after the number 
"791." On p. 346, last line, "Potenzreihen" should read "Potenzformen." 

It is to be regretted that the author had to depart before he could ac­
complish what was doubtless his intention, an extension of the work to 
the quaternary field. The notes published by the author in Volume I of 
Grassmann's Gesammelte Werke, pages 438-464, seem to be a tentative 
beginning in this direction. 

"Hans bok kom ikke, han selv gik derhen, 
Hvor tankernes lov ikke skrives med pen." 

—B. Björnson 
JOHN EIESLAND 


