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T H E POLAR CURVES OF PLANE ALGEBRAIC 
CURVES IN T H E GALOIS FIELDS* 

BY A. D. CAMPBELL 

By imitating the proofs in Fine's College Algebra (pp. 460-
462) and Veblen and Young's Projective Geometry (vol. I, 
pp. 255-256) we can readily show that also in the Galois 
fields of order pn (p a prime integer) we have Taylor's ex­
pansion 

f(x + \X, y + \Y,z + \Z) 

s / ( * , y,z) + j](fx'x+fjY + f;z) 

+ —(fJX + fJY+f:Z)<'> + • • • + f(Xy Y,Z) = 0, 
r\ 

where (fxX-\-fy' Y+fjZ)^ is symbolic for an expression 
containing derivatives of the iih order, and f(x, y, z)=0 
is an algebraic curve of order n. In the above expansion 
we must take all the derivatives as though p were not a 
modulus, cancel out common factors from numerators and 
denominators, and then set p = 0. 

The rth polar of (X> F, Z) with respect to ƒ(#, y, z) = 0 is 

—{fiX+fiY+fiZ)M = 0. 
r\ 

In particular the rth. polar of (1, 0, 0) is (l/V!)3r/(x, y, z)/dxr 

= 0. We suppose first of all that n has the value 

n = apm + ppm~l + • • • + yp2 + op + €, 
6^o, ^ = € + r, r^o . 

* I resented to the Society, December 23, 1927. 
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We can write the polars of (1, 0, 0) by a sort of detached 
coefficients, underlining the coefficients that have p as a 
factor, as follows : 

(l/ll)[n,n — l,w — 2, • • • , n — t,n — e — 1, 

• • • , * - p - e, • • • , n - j>2 - €, • • • , 3,2,1] = 0, 

( l /2!)[»(« - l ) , (n - 1)(» — 2), - • • , (ff — € + l)(n - c), 

(w — e)Q — e - 1), • • • , (w ~ £ - € + l)(w - p - e)9 

(n — p — e)(n — p — e — 1), • • • , (^ — _/>2 — e + 1) 

. ( * - ? » - 6 ) , ( t t - ^ - 6 ) ( t t - J » - € - - l ) , • • - , 3 - 2 , 2 - l ] = 0 , 

[ l / ( € + 1) ! ] [ » ( * - l)(f» — 2) • • • ( » - e ) , ( » - 1 ) 0 - 2) • • • 

• (^ ~" e ) 0 — € — 1), • • • , (w — e) (n — e — 1) • • • (w — 2e), 

O - e - 1 ) 0 - € - 2) • • • (» - 2e)0 - 2e - 1), • • -, 

( € + 1 ) ! ] = 0, 

(l/pl) [n(n - ! ) • • • Q - e) • • • (» - £ + 1) • • • , p\\ = 0, 

where («—X) (» — X — 1) • • •(»— X— i) stands for all the 
terms of the same (»—X—• i— 1) power, which then have this 
common factor in their coefficients. From the above polars 
we see that the eth polar has at (1, 0, 0) a tangent having 
(e + l)-point contact if (1, 0, 0) is not on f(x, y, z) = 0, other­
wise a multiple point of order e + 1. The (e + l ) th polar, 
(e + 2)th, • • -, (p— l ) th polar all have multiple points of 
order e + 1 at (1, 0, 0). Similarly the (£ + e + l ) th polar, 
(£ + e + 2)th, • • -, ( 2 £ - l ) t h have at (1, 0,0) multiple points 
of order e + 1; also the (2£ + e + l ) th polar points of order 
( 3 £ - l ) h, • • • , the (0£*+ • • • + <j>p + e + l) th polar points of 
order {Qpl+ • • -+0/>+/>—l)th,etc. Moreover we note that 
if any one of the polar curves that have multiple points at 
(1, 0, 0) is a curve of degree e + 1, then this polar curve is 
degenerate. Thus for p = 2> w = 22 + l, e = l, we find the 2d 
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polar is degenerate; for p = 3, n = 3 + l, e = l, we find again 
the 2d polar is degenerate. 

If n = apm+l3pm-1-\ \-yp2 + 8p, i.e. e = 0 in n, then all 
the polars of (1, 0, 0) pass through (1, 0, 0) whether or not 
this point lies on f(x, y, z) = 0. 

If n <p we find no peculiarities like the above. 

SYRACUSE UNIVERSITY 

T H E CHARACTERISTIC EQUATION OF 
A MATRIX* 

BY E. T. BROWNE 

1. Introduction. Consider any square matrix A, real or 
complex, of order n. If / is the unit matrix, A —X7 is called 
the characteristic matrix of A ; the determinant of the 
characteristic matrix is called the characteristic determinant 
of A ; the equation obtained by equating this determinant 
to zero is called the characteristic equation of A ; and the 
roots of this equation are called the characteristic roots 
of A. If A happens to be a matrix of a particular type cer­
tain definite statements may be made as to the nature of its 
characteristic roots. For example, if A is Hermitian its 
characteristic roots are all real; if A is real and skew-
symmetric, its characteristic roots are all pure imaginary or 
zero ; if A is a real orthogonal matrix, its characteristic roots 
are of modulus unity. However, if A is not a matrix 
of some special type, no general statement can be made as to 
the nature of its characteristic roots. In 1900 Bendixsonf 
proved that if a+i/3 is a characteristic root of a real matrix 
A, and if P i àP2è**- èPn are the characteristic roots 
(all real) of the symmetric matrix %(A +A'), then pi^ce^pn. 
The extension to the case where the elements of A are com-

* Presented to the Society, December 28, 1927. 
t Bendixson, Sur les racines d'une équation fondamentale, Acta Math­

ematica, vol. 25 (1902), pp. 359-365. 


