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GENERALIZATIONS OF THE THEOREM OF
FERMAT AND CAUCHY ON
POLYGONAL NUMBERS*

BY L. E. DICKSON

1. Introduction and Summary. We seek the least I such
that every integer 4 20 is a sum of / values of

(1) Pmie(x — k) = §(x — B)[m(x — & — 1) + 2]

for integers x=0. When k=0, (1) is a polygonal number of
order m-+2, and Fermat stated that l/=m-+2. This was
first proved by Cauchy, who found that all but four of the
m-+2 polygonal numbers may be taken as 0 or 1. A simpler
proof was given by the writer in this Bulletin (vol 33 (1927),
pp. 719-726) that paper will be cited as I.

When all but four of the I values of (1) are 0 or 1, we
shall prove here that

l=m—1 if k=1, m=7; m—2 if k=2, m=8, or 1f
k=3, m=7; 1=6 if k=1, m=6, or k=2, m=T; l= =5 1f
k=1, m=4or 5,orif k=2, m=6;1l=4if k=1, m=3, or 1f

k=2, m=4orS5.
When all but s of the ! values of (1) are 0 or 1, where
5<s=l, we shall prove that, for every k=1,

l=m—2 if m>7, l=5s if m=T.
But 4 is a sum of ! values of (1) if and only if¢}
(2) 8mAd+iUm—22= Y, Qmx+2—m— 2mk)?,
1
summed for / integers x=0. We saw that /=4 when k=1,

m=3, and when k=2, m=4 or 5. Hence (2) shows that for
every integer 4 =0,

* Presented to the Society, September 9, 1927,

t This implies the like formula with k replaced by any larger integer
k+p. The values x=p give the same squares as occur in (2) for x=0.
Hence we use the least permissible k.
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244 + 4 = Y (6x—T)%, 404 4+ 36 = D (10x — 23)2,
4 4

3 84 + 4= Y (4x — 9)2.

By Theorem 6 and (2), we have
(4) 3A4+4= > (3x—16)? ifd #£4 (mod 8).
4

For s=35, m<7, we saw that J=5. Then (2) for k=1 is
(5) 8mA + 5(m — 2)2 = Y, 2mx + 2 — 3m)?.
5

For m =3 this result is obtained by adding 1 to each member
of (3,) and is discarded. When = is 4 or 6, we cancel factors
4 or 16. We get

(6) 84+ 5= (4x — 5)2, 404 + 45 = Y, (10x — 13)2,
b 5

(7) 3445= > 3z —4)?, 564 + 125 = Y (14x — 19)2,
5 5

The results obtained when s=4, /=35 are consequences of
these.

When k=1, m=8, Theorem 2 states that [=m —2 except
for A =54m+16. This is a remarkable fact since the single
exceptional value may be made as large as we please by
taking m sufficiently large. Again, if k=5, m=6, we find
that =4 fails first for 4 =980; by increasing k, the first
failure will occur for a value of 4 exceeding any assigned
number.

In later papers I shall prove that the value of / obtained
when s=3 is never less than the minimum ! found here,
and I shall give an improved method valid when s>4, but
not when s=4.

2. Formulas. Give (1) the notation imx?+43nx-+c. Thus
(8) n=2—m-—2mk, c=3im(k2+ k) — k.
For £=1 the reduced minor conditions in I now follow from

9) A=4c+4E, A = 4c+ Im.
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For, from the inequality (9:) we deduce (11) of I, since
the sum (—n)(2m-+n)/m of its last two terms is negative,
because —n is positive and 2m-+# is negative. By (8)),
we may write (4) of I in the form

(10) A=mg+4c+b+r, g=13(a—b— 2kd).

3. Excess E when k=1. The values of (1) for x=0 are
m—1 and all the polygonal numbers of order m+2.

TABLE II.

Sums BY FOUR OF m—1 AND POLYGONAL NUMBERS

04, m—1, m, m+1-5, 2m—2, 2m—1, 2m, 2m+1-6, 3m—3, 3m—2,
3m,3m~+1,3-7,4m—4,4m—1,4m+2-8,5m+1,2,4,5,7, 8, 6m, 6m+3-9,
Tm+3-9, 8m+2-10, Im+1, 4, 7-10, 10m+5-11, 11m+4-9, 11, 12m+3,
4, 6-12, 13m+2, 5, 7-12, 14m+6-12, 15m-+6-9, 11-13, 16m-+5-13,
17m+4, 5, 1-13, 18m+3, 6, 7, 9-14, 19m+8, 9, 11-14, 20m+7, 10-14,
21m+7-13, 15, 22m+6-15, 23m+5, 6, 8, 9, 11-15, 24m+4, 7, 10-16,
25m+9-13, 15, 16, 26m+8, 10, 11, 13-16, 27m+9, 11-16, 28m+8-17,
29m+7-13, 15-17, 30m+6, 7, 9, 10, 12-17, 31m+-5, 8, 11-17, 32m+10-18,
33m+9, 10, 12, 13, 15-18, 34m+12-18, 35m+411-17, 36m+9-19, 37m
+8-13, 15-19, 38m+7, 8, 10, 11, 13-15, 17-19, 39m+6, 9, 12-17, 19,
40m +11, 12, 14-20, 41m 410, 13, 15-20, 42m +13-20, 43m+12-17, 19, 20,
44m+11-20, 45m+10-13, 15-21, 46m+9-21, 47m+8, 9, 11-17, 19-21,
48m+17, 10, 12-21, 49m+12, 13, 15-21, 50m+11, 14-22, 51m+13-17, 19~
22, 52m+-13-22, 53m+12, 13, 15-21, 54m+417-19, 21, 22,

If m=6, E(9m-+6) =2, since nefther 9m~+5 nor 9m—+6 is
equal to a number of Table II. If m=5, Table II lacks
17=2m+7=3m+2=4m—3. If m=4, it lacks 26=4m+10
=5m+6=6m-+2="7Tm—2. Also,* E(54m + 16) = m — 5.
Hence E is not smaller than the value shown in

TrEOREM 1. For k=1, E=m—5if m=7, E=2 if m=6,
E=14m=4o0r5 E=0if m=3,

By (10) we require that the values of b+ shall include a
complete set of residues modulo m when 7 takes the values
0,1,:--, E, and b takes certain consecutive odd values.
When m=3 or m =35, this will be true if b takes the values

* And independently of Table II, since the only partitions of 53 into
0,1, 3, 6,10, 15, 21, 28, 36, 45 are 1+1+6+45, 14+1+15+36, 1+6+10+
36, 14+3+21+28, 0410415428, 1+10+21+21.
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B, B+2, B+4, whence d=6. But when m =4, we need only
B8, B8+2, whence d =4. Conditions (9) hold if 4 =8m.

Let m=7. By (6)-(15) of I,
U = 24mA — 63m? + 12m + 36, V = 2mA — m? + 6m +4,
P=Tm+2, W=3md— 14m? — 2m + 4,
F = m24? — T4m?4 — 28m?*4 + 193m* + 70m® — 68m?

— 24m > 0.
The last evidently holds if

(11) A = 74m + 28.

Next, let m=6. Then
U=236(44 —60), V=124 -8, P=44, W = 184 — 512,
F = 36[(74 — 88)2 — (124 — 8)(44 — 60)]

= 36(42 — 4804 + 7264),

and F>0 if 4 2465 and hence if (11) holds.

If m=6, Theorem 1 now follows from Lemma 3 of I and
the following lemma.

Lemma 1. If m=5 in Table 11, E(A)<m—5 when A is
between any consecutive blocks, while E(A) £2 when A is in
any block.

For, the difference between consecutive entries in any
block is always <3. If r is the term free of m in the leader
gm—+r of any block, then 7+4 is found to be the term free
of m of a number of Table II within the preceding block.
Hence gm-+4-r—1 is the sum of m—5 and the number
(g—1)m—+r+4 in the table.

When m =35, the last two sentences hold after we suppress
from Table II all entries down to and including the last entry
which differs by 3 from the next entry of the block. The
only exception is the leader 9m+7, while 9m-+6 exceeds
8m—+10 by 1. Hence E(4) =1 if 4 <£54m—+22.

Form = 35,d =6,n = — 13,c = 4,
U=1204 — 1479, V=104 —1, P =37, W = 154 — 356,
F = 2542 — 101504 4 126685 > 0if 4 > 393 = 74m + 23.



1928.] POLYGONAL NUMBERS 67

These facts with Lemma 3 of I prove Theorem 1 for m=35.
Form =4,d = 4,n = — 10,c = 3,
U =4(244 —231), V=424 —1), P=14, W =124 — 140,
F =16[(74 — 37)2 + (24 — 1)(244 — 231)]
=16(4 — 16)2 + 16 - 882 > 0.
Finally, let m=3. Thend=6,n=—17, c=2,
U=984—-55), V=64+1, P=23, W =94 — 128,
F = 9[(74 — 42)2 — (64 + 1)(84 — 55)]
= 9(42 — 2664 + 1819) > 0,

if 42259, For A <259, Theorem 1 was verified by Tables
I and II.

4. THEOREM 2. If k=1, m=8, E(A)<m—6 except for
A =54m-+16.

Within every block of Table II the difference of any two
consecutive entries is <3. If f is the term free of m in the
leader gm-+f of any block having ¢#16, 46, 52, 54, then
f+5 is that of a number ¢ occurring explicitly in the table.
Hence gm-+f—1 is the sum of m—6 and t=(¢—1)m+f+S5.
For ¢=16, 46, and 52, a like result holds if we replace
f+35 by f+6 and hence replace m—6 by m—7. Hence the
theorem is true for 4 <54m+16. For 54m—+17<A4A <199m
437, it is true by Lemmas 3 and 4 of I.

For A =199m+38, E=m—6, we have d =8,

U = 24mA — 63m* + 12m + 36, V = 2mA — m? + 8m + 4,
P = 11m + 2, W = 3md — 23m* — 4m + 4,
F = m?4? — 200m®4 — 48m?4 + 562m* — 84m?
— 264m?* — 48m.
Then F>0, in fact for A =198m-+44+t¢, t=0.
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5. Excess E, when k=1.

THEOREM 3. When k=1, E,=0 of m=7, s=5, and if
m>7, s=m—2, while E,=m—s—2if m>7, 55s<m—2.

If m <5, this follows from Theorem 1. If m>7, Es<m—17
by Theorem 2 and the fact that 54m 416 is the sum of the
polygonal number 343 and the entry 51m-+13 of Table I1.
Since the polygonal numbers >1 exceed m—1, the sum-
mands yielding m—2 are all 1, whence E,(m—2) =m—2—s.
Hence Es=m—7. If s>5, regard s—5 of the values 1 as
polygonal numbers; hence E;<m—7—(s—5). This proves
Theorem 3 except for m =6 and 7.

For m=6 or 7, we seek a constant C,, such that E4(4) =1
for every A=2C,. When 7 takes the values 0 and E=1,
and b takes 3 or 4 consecutive odd values according as
m=6 or m=7, the values of b+ include a complete set of
residues modulo m, whence d =6 or 8, respectively.

In the discussion in § 3 for m=7, we had d=6, E=m—35.
Hence it is valid here for m =6, d=6, E=1, and shows that
E (4)=1if A=74m+28. Likewise, the work at the end of
§ 4 is valid here for m=7, d=8, E=1, and shows that
Eyf(4)S1if A 2198m+44.

It remains to treat the values of 4 below these two limits.
From Table II we readily deduce a list of the sums by
five of m—1 and polygonal numbers and then verify for
m=6 and m =17 that the list includes all positive integers
<54m-+25. From thence to 74m-+28, E4(A)=1 if m=6
or7by Lemma3of I. If m=7 and 74m+20=<A4 <199m 37,
E44)=1 by Lemma 4 of I. This completes the proof of
Theorem 3.

6. Excess E when k=2. The values of (1) for k=2, x=0
are m—1, 3m—2, and all the polygonal numbers of order
m—+2. Evidently E(m—2)=m—6. For m=7T the sums by
four of the values mentioned were tabulated to 395; the
only consecutive integers missing from the list are 393-4;
hence E(394) =2, E(4) =1 if A <394. For m=6, E(60)=1.
Hence E is not smaller than the value shown in
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THEOREM 4. For k=2, E=m—6if m=8, E=2 if m=1,
E=1 1 m=6, E=0 i m=3, 4, or 5. If m=7, E(4)=1
except for A =394.

Conditions (9) are satisfied if 4 =216m. Forr=0,1, - - -,
E, we require that b+ shall include a complete set of resi-
dues modulo m. When m =8, this will be true if b takes the
values B, 8+2, B+4, B+6; when m=5, also 8+8; when
m =06 or 7, only the first three.

First, let m=8. Then d=38,

U= 24mA — 135m® 4+ 36m + 36, P =9m 4+ 2,
V=2mA—m?>+8m+4, W = 3md — 2Tm? + 4,
F = m?4? — 112m34 — 40m?4 + 706m* + 188m3 — 152m?

— 48m.
Evidently F>0if 4 2112m+40. For smaller 4’s exceeding

54m+16, Lemmas 3 and 4 of I show that E(4)<m—6
if m=7.

LemMA 2. If m=7 in Table 11, E(A) =m—6 except for
A=9m+6, 20m+9, and 54m-+16.

From each block we suppress all entries down to and
including the last entry which differs by 3 from the next
entry. Proceed as in § 4. We now have the further excep-
tions ¢=9 and 20. Also

m+3=m—6+t, Im+5=1+1,,
20m+8=m—6-+1t, S4m+1S=m — 6 + t4,
where the #; occur in the table.

For m =8, Theorem 4 now follows since

m+6=14+2C8m+3)+3m—2+1, 20m+9=m+ 2
+6m+ 4+ 10m+ 54+ 3m — 2,
54m + 16 = 2(3m + 3) + 45m + 10 + 3m — 2 + 2.

For m=7, E=2,d=6, P=37,

U= 1684 — 6327, V = 144 — 3, W = 214 — 962,
F/7 = T4% — 8264 + 131149,
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and F>0 for every 4 >0. But if we attempt to use E=1,
we have d =38; the discussion for m=8 now applies also for
m=17 except when 4=54m+16=394. This proves both
parts of Theorem 4if m=17.

Next, let m=6. Then E=1,d=6, P=32,

U=9(164 — 512), V = 4(34 + 1), W = 184 — 704,
F/36 = (T4 — 116)2— (34 + 1)(164 — 512) = (4 — 52)?
+ 11264.

The minor conditions in I are all satisfied if 4 =44. For

m =6, Table II includes all numbers less than 44 except
33=1+423m—2).
Let m=5. Then E=0,d=10, P=67,

U= 1204 — 3159, V = 104 4+ 9, W = 154 — 956,
F/25 = (A — 703)* — 457878 > 0if 4 = 1380.

It was verified that every integer <1380 is a sum by four of
4, 13, and polygonal numbers of order 7, whence E =0.

Let m=4. Then n=—18, ¢=10, 4 =2a—9+40. Our
general method requires that ¢ and b be odd and applies
only when 4 is odd. By (10) with =0, b=4(mod 4).
Hence d=4, P=6,

U= 40244 — 495), V = 424 + 1), W = 434 — 63),
F/16 = (T4 — 61)? — (24 + 1)(244 — 495) = A? + 1124
+ 4216,
whence F>0 for every 4 20. The minor conditions in I
are all satisfied if 4 =28. For m =4, Table II includes all

integers <28 except 26 =m—+2+42(3m—2).

Next, let 4 be even. Since b must be even, our previous
method is not applicable.

LemMmA 3.* If b=2B, a is even, a—B? is a sum of three
squares, and

* Legendre, Théorie des Nombres, ed. 3, II, No. 628, with omission
of denominator 2 in No. 629.
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(12) 4B%* + 2B + 1 > 3a,
then a =3 a?, b=« have solutions «, 3, v, 8 in integers =0.

Write A =2S. Then a=S+9B—20. Inserting this value
of a into (12) and multiplying by 16, we see that (12) holds if

(13) 8B > 25 4 ul/?, = 485 — 351 = 0.
Similarly, B2 <a if
(14) 2B <9+ 912, 9 =454 1.

Take B=2—S (mod 4). Then e¢=2(mod 4), a—B?=1
or 2 (mod 4), according as B is odd or even. Hence a—B?
is a sum of three squares, and all conditions in Lemma 3
are satisfied.

To insure the choice of B as a prescribed residue modulo 4,
we require that the difference between the limits for B,
determined by (13) and (14), shall exceed 4. The resulting
inequality reduces as usual to

S? — 3405 4 2440 > 0, S = 333.

It remains only to verify Theorem 4 for m=4 when 4
is even and <666. This was done above when A <28.
Table II includes all integers from 28 to 238 except 236;
Table I includes all from 235 to 666.

7. Excess when k=3. Evidently E(m—2)=m—6. If
m=7,
394 =54m—+16=6m—3+2(10m+5)+28m+8+41.
Hence Theorem 4 implies the cases m =7 of

THEOREM 5. Forkz3, E=m—6ifm=7, E=14 m=6.

That E=1 if m =6 follows from Theorem 4 and a result to
be proved in a later paper on extended polygonal numbers.
It was verified that 116 (or 980) is the least positive integer
which is not a sum by four of the values of (1) for x=0,
k=4 (or k=5). For x=0, the values >1 of (1) are all
=m—1. Hence the proof in § 5 shows that Theorem 3
holds also when £2>1.
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8. THEOREM 6. If m=6, k=5, E(4) =0 except for A =4
(mod 8).
If A is odd, our general method applies with
d=6,U=144(4 — 119),V = 124 4+ 16, P = — 4.

Then (14) and hence (13) of I holds. Also, (9) hold
if 4 =344, which is below the limit 980 for which E=0 (§ 7).
Next, let A=2 (mod 4). Take b=2B and determine B
modulo 3 to make @ an integer. Then a=2 (mod 4). Apply
Lemma 3. Then (12) holds and B2?<a if
4B > 31 4+ ul/?, 3B < 32+ o'2, u =44 — 403,
v = 34 + 4.

The difference between these limits for B exceeds d if
(15) 491/2 — 3412 > R = 124 — 35.

Here d =3 and (15) holds for every 4 such that »>0.

Finally, let A=0 (mod 8). Take an odd B such that a
is an integer, whence d =6. Then a=4 (mod 8) and Lemma 3
applies. The square of (15) holds if

(4 — 491)2 > 65712, A = 748.
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