GENERALIZATIONS OF THE THEOREM OF FERMAT AND CAUCHY ON POLYGONAL NUMBERS*

BY L. E. DICKSON

1. Introduction and Summary. We seek the least l such that every integer $A \ge 0$ is a sum of l values of

(1)
$$p_{m+2}(x-k) = \frac{1}{2}(x-k)[m(x-k-1)+2]$$

for integers $x \ge 0$. When k = 0, (1) is a polygonal number of order m+2, and Fermat stated that l=m+2. This was first proved by Cauchy, who found that all but four of the m+2 polygonal numbers may be taken as 0 or 1. A simpler proof was given by the writer in this Bulletin (vol 33 (1927), pp. 719-726) that paper will be cited as I.

When all but four of the l values of (1) are 0 or 1, we shall prove here that

l=m-1 if k=1, $m \ge 7$; l=m-2 if k=2, $m \ge 8$, or if $k \ge 3$, $m \ge 7$; l=6 if k=1, m=6, or k=2, m=7; l=5 if k=1, m=4 or 5, or if $k \ge 2$, m=6; l=4 if $k \ge 1$, m=3, or if $k \ge 2$, m=4 or 5.

When all but s of the l values of (1) are 0 or 1, where $5 \le s \le l$, we shall prove that, for every $k \ge 1$,

$$l=m-2$$
 if $m>7$, $l=s$ if $m \le 7$.

But A is a sum of l values of (1) if and only if \dagger

(2)
$$8mA + l(m-2)^2 = \sum_{l} (2mx + 2 - m - 2mk)^2,$$

summed for l integers $x \ge 0$. We saw that l=4 when k=1, m=3, and when k=2, m=4 or 5. Hence (2) shows that for every integer $A \ge 0$,

^{*} Presented to the Society, September 9, 1927.

[†] This implies the like formula with k replaced by any larger integer k+p. The values $x \ge p$ give the same squares as occur in (2) for $x \ge 0$. Hence we use the least permissible k.

$$24A + 4 = \sum_{4} (6x - 7)^{2}, \quad 40A + 36 = \sum_{4} (10x - 23)^{2},$$

$$8A + 4 = \sum_{4} (4x - 9)^{2}.$$

By Theorem 6 and (2), we have

(4)
$$3A + 4 = \sum_{A} (3x - 16)^2 \text{ if } A \not\equiv 4 \pmod{8}.$$

For s=5, $m \le 7$, we saw that l=5. Then (2) for k=1 is

(5)
$$8mA + 5(m-2)^2 = \sum_{5} (2mx + 2 - 3m)^2.$$

For m=3 this result is obtained by adding 1 to each member of (3_1) and is discarded. When m is 4 or 6, we cancel factors 4 or 16. We get

(6)
$$8A + 5 = \sum_{5} (4x - 5)^2$$
, $40A + 45 = \sum_{5} (10x - 13)^2$,

(7)
$$3A + 5 = \sum_{5} (3x - 4)^2$$
, $56A + 125 = \sum_{5} (14x - 19)^2$.

The results obtained when s=4, l=5 are consequences of these.

When k=1, $m \ge 8$, Theorem 2 states that l=m-2 except for A=54m+16. This is a remarkable fact since the single exceptional value may be made as large as we please by taking m sufficiently large. Again, if k=5, m=6, we find that l=4 fails first for A=980; by increasing k, the first failure will occur for a value of A exceeding any assigned number.

In later papers I shall prove that the value of l obtained when s=3 is never less than the minimum l found here, and I shall give an improved method valid when s>4, but not when s=4.

2. Formulas. Give (1) the notation $\frac{1}{2}mx^2 + \frac{1}{2}nx + c$. Thus

(8)
$$n = 2 - m - 2mk, \quad c = \frac{1}{2}m(k^2 + k) - k.$$

For $k \ge 1$ the reduced minor conditions in I now follow from

(9)
$$A \ge 4c + 4E, \quad A \ge 4c + \frac{2}{3}m.$$

For, from the inequality (9_2) we deduce (11) of I, since the sum (-n)(2m+n)/m of its last two terms is negative, because -n is positive and 2m+n is negative. By (8_1) , we may write (4) of I in the form

(10)
$$A = mg + 4c + b + r, \quad g = \frac{1}{2}(a - b - 2kb).$$

3. Excess E when k=1. The values of (1) for $x \ge 0$ are m-1 and all the polygonal numbers of order m+2.

TABLE II.

Sums by Four of m-1 and Polygonal Numbers

 $\begin{array}{c} 0-4,\ m-1,\ m,\ m+1-5,\ 2m-2,\ 2m-1,\ 2m,\ 2m+1-6,\ 3m-3,\ 3m-2,\ 3m,\ 3m+1,\ 3-7,\ 4m-4,\ 4m-1,\ 4m+2-8,\ 5m+1,\ 2,\ 4,\ 5,\ 7,\ 8,\ 6m,\ 6m+3-9,\ 7m+3-9,\ 8m+2-10,\ 9m+1,\ 4,\ 7-10,\ 10m+5-11,\ 11m+4-9,\ 11,\ 12m+3,\ 4,\ 6-12,\ 13m+2,\ 5,\ 7-12,\ 14m+6-12,\ 15m+6-9,\ 11-13,\ 16m+5-13,\ 17m+4,\ 5,\ 7-13,\ 18m+3,\ 6,\ 7,\ 9-14,\ 19m+8,\ 9,\ 11-14,\ 20m+7,\ 10-14,\ 21m+7-13,\ 15,\ 22m+6-15,\ 23m+5,\ 6,\ 8,\ 9,\ 11-15,\ 24m+4,\ 7,\ 10-16,\ 25m+9-13,\ 15,\ 16,\ 26m+8,\ 10,\ 11,\ 13-16,\ 27m+9,\ 11-16,\ 28m+8-17,\ 29m+7-13,\ 15-17,\ 30m+6,\ 7,\ 9,\ 10,\ 12-17,\ 31m+5,\ 8,\ 11-17,\ 32m+10-18,\ 33m+9,\ 10,\ 12,\ 13,\ 15-18,\ 34m+12-18,\ 35m+11-17,\ 36m+9-19,\ 37m+8-13,\ 15-19,\ 38m+7,\ 8,\ 10,\ 11,\ 13-15,\ 17-19,\ 39m+6,\ 9,\ 12-17,\ 19,\ 40m+11,\ 12,\ 14-20,\ 41m+10,\ 13,\ 15-20,\ 42m+13-20,\ 43m+12-17,\ 19-21,\ 48m+7,\ 10,\ 12-21,\ 49m+12,\ 13,\ 15-21,\ 50m+11,\ 14-22,\ 51m+13-17,\ 19-22,\ 52m+13-22,\ 53m+12,\ 13,\ 15-21,\ 54m+17-19,\ 21,\ 22. \end{array}$

If $m \ge 6$, E(9m+6) = 2, since neither 9m+5 nor 9m+6 is equal to a number of Table II. If m=5, Table II lacks 17 = 2m+7 = 3m+2 = 4m-3. If m=4, it lacks 26 = 4m+10 = 5m+6 = 6m+2 = 7m-2. Also,* E(54m+16) = m-5. Hence E is not smaller than the value shown in

THEOREM 1. For k=1, E=m-5 if $m \ge 7$, E=2 if m=6, E=1 if m=4 or 5, E=0 if m=3.

By (10) we require that the values of b+r shall include a complete set of residues modulo m when r takes the values 0, 1, \cdots , E, and b takes certain consecutive odd values. When m=3 or $m \ge 5$, this will be true if b takes the values

^{*} And independently of Table II, since the only partitions of 53 into 0, 1, 3, 6, 10, 15, 21, 28, 36, 45 are 1+1+6+45, 1+1+15+36, 1+6+10+36, 1+3+21+28, 0+10+15+28, 1+10+21+21.

 β , $\beta+2$, $\beta+4$, whence d=6. But when m=4, we need only β , $\beta+2$, whence d=4. Conditions (9) hold if $A \ge 8m$. Let $m \ge 7$. By (6)-(15) of I,

$$U = 24mA - 63m^2 + 12m + 36, \quad V = 2mA - m^2 + 6m + 4,$$

$$P = 7m + 2, \quad W = 3mA - 14m^2 - 2m + 4,$$

$$F = m^2A^2 - 74m^3A - 28m^2A + 193m^4 + 70m^3 - 68m^2$$

-24m > 0.

The last evidently holds if

(11)
$$A \ge 74m + 28$$
.

Next, let m = 6. Then

$$U = 36(4A - 60), V = 12A - 8, P = 44, W = 18A - 512,$$

$$F = 36[(7A - 88)^2 - (12A - 8)(4A - 60)]$$

$$= 36(A^2 - 480A + 7264),$$

and F>0 if $A \ge 465$ and hence if (11) holds.

If $m \ge 6$, Theorem 1 now follows from Lemma 3 of I and the following lemma.

LEMMA 1. If $m \ge 5$ in Table II, $E(A) \le m-5$ when A is between any consecutive blocks, while $E(A) \le 2$ when A is in any block.

For, the difference between consecutive entries in any block is always ≤ 3 . If r is the term free of m in the leader qm+r of any block, then r+4 is found to be the term free of m of a number of Table II within the preceding block. Hence qm+r-1 is the sum of m-5 and the number (q-1)m+r+4 in the table.

When m=5, the last two sentences hold after we suppress from Table II all entries down to and including the last entry which differs by 3 from the next entry of the block. The only exception is the leader 9m+7, while 9m+6 exceeds 8m+10 by 1. Hence $E(A) \le 1$ if $A \le 54m+22$.

For
$$m = 5, d = 6, n = -13, c = 4,$$

 $U = 120A - 1479, V = 10A - 1, P = 37, W = 15A - 356,$
 $F = 25A^2 - 10150A + 126685 > 0 \text{ if } A > 393 = 74m + 23.$

These facts with Lemma 3 of I prove Theorem 1 for m = 5.

For
$$m = 4, d = 4, n = -10, c = 3,$$

$$U = 4(24A - 231), V = 4(2A - 1), P = 14, W = 12A - 140,$$

$$F = 16[(7A - 37)^2 + (2A - 1)(24A - 231)]$$

$$= 16(A - 16)^2 + 16 \cdot 882 > 0.$$

Finally, let m=3. Then d=6, n=-7, c=2,

$$U = 9(8A - 55), V = 6A + 1, P = 23, W = 9A - 128,$$

 $F = 9[(7A - 42)^2 - (6A + 1)(8A - 55)]$
 $= 9(A^2 - 266A + 1819) > 0,$

if $A \ge 259$. For A < 259, Theorem 1 was verified by Tables I and II.

4. THEOREM 2. If k=1, $m \ge 8$, $E(A) \le m-6$ except for A = 54m+16.

Within every block of Table II the difference of any two consecutive entries is ≤ 3 . If f is the term free of m in the leader qm+f of any block having $q \neq 16$, 46, 52, 54, then f+5 is that of a number t occurring explicitly in the table. Hence qm+f-1 is the sum of m-6 and t=(q-1)m+f+5. For q=16, 46, and 52, a like result holds if we replace f+5 by f+6 and hence replace m-6 by m-7. Hence the theorem is true for A < 54m+16. For $54m+17 \leq A \leq 199m+37$, it is true by Lemmas 3 and 4 of I.

For $A \ge 199m + 38$, E = m - 6, we have d = 8,

$$U = 24mA - 63m^2 + 12m + 36$$
, $V = 2mA - m^2 + 8m + 4$, $P = 11m + 2$, $W = 3mA - 23m^2 - 4m + 4$, $F = m^2A^2 - 200m^3A - 48m^2A + 562m^4 - 84m^3 - 264m^2 - 48m$.

Then F > 0, in fact for A = 198m + 44 + t, $t \ge 0$.

5. Excess E_s when k=1.

THEOREM 3. When k=1, $E_s=0$ if $m \le 7$, $s \ge 5$, and if m > 7, $s \ge m-2$, while $E_s=m-s-2$ if m > 7, $5 \le s \le m-2$.

If $m \le 5$, this follows from Theorem 1. If m > 7, $E_5 \le m - 7$ by Theorem 2 and the fact that 54m + 16 is the sum of the polygonal number 3m + 3 and the entry 51m + 13 of Table II. Since the polygonal numbers >1 exceed m-1, the summands yielding m-2 are all 1, whence $E_s(m-2) = m-2-s$. Hence $E_5 = m - 7$. If s > 5, regard s - 5 of the values 1 as polygonal numbers; hence $E_s \le m - 7 - (s - 5)$. This proves Theorem 3 except for m = 6 and 7.

For m=6 or 7, we seek a constant C_m such that $E_4(A) \le 1$ for every $A \ge C_m$. When r takes the values 0 and E=1, and b takes 3 or 4 consecutive odd values according as m=6 or m=7, the values of b+r include a complete set of residues modulo m, whence d=6 or 8, respectively.

In the discussion in § 3 for $m \ge 7$, we had d=6, E=m-5. Hence it is valid here for m=6, d=6, E=1, and shows that $E_4(A) \le 1$ if $A \ge 74m+28$. Likewise, the work at the end of § 4 is valid here for m=7, d=8, E=1, and shows that $E_4(A) \le 1$ if $A \ge 198m+44$.

It remains to treat the values of A below these two limits. From Table II we readily deduce a list of the sums by five of m-1 and polygonal numbers and then verify for m=6 and m=7 that the list includes all positive integers $\leq 54m+25$. From thence to 74m+28, $E_4(A) \leq 1$ if m=6 or 7 by Lemma 3 of I. If m=7 and $74m+20 \leq A \leq 199m+37$, $E_4(A) \leq 1$ by Lemma 4 of I. This completes the proof of Theorem 3.

6. Excess E when k=2. The values of (1) for k=2, $x \ge 0$ are m-1, 3m-2, and all the polygonal numbers of order m+2. Evidently E(m-2)=m-6. For m=7 the sums by four of the values mentioned were tabulated to 395; the only consecutive integers missing from the list are 393-4; hence E(394)=2, $E(A)\le 1$ if A<394. For m=6, E(60)=1. Hence E is not smaller than the value shown in

THEOREM 4. For k=2, E=m-6 if $m \ge 8$, E=2 if m=7, E=1 if m=6, E=0 if m=3, 4, or 5. If m=7, $E(A) \le 1$ except for A=394.

Conditions (9) are satisfied if $A \ge 16m$. For $r = 0, 1, \dots, E$, we require that b+r shall include a complete set of residues modulo m. When $m \ge 8$, this will be true if b takes the values β , $\beta+2$, $\beta+4$, $\beta+6$; when m=5, also $\beta+8$; when m=6 or 7, only the first three.

First, let $m \ge 8$. Then d = 8,

$$U = 24mA - 135m^{2} + 36m + 36, P = 9m + 2,$$

$$V = 2mA - m^{2} + 8m + 4, W = 3mA - 27m^{2} + 4,$$

$$F = m^{2}A^{2} - 112m^{3}A - 40m^{2}A + 706m^{4} + 188m^{3} - 152m^{2} - 48m.$$

Evidently F > 0 if $A \ge 112m + 40$. For smaller A's exceeding 54m + 16, Lemmas 3 and 4 of I show that $E(A) \le m - 6$ if $m \ge 7$.

LEMMA 2. If $m \ge 7$ in Table II, $E(A) \le m-6$ except for A = 9m+6, 20m+9, and 54m+16.

From each block we suppress all entries down to and including the last entry which differs by 3 from the next entry. Proceed as in § 4. We now have the further exceptions q=9 and 20. Also

$$9m + 3 = m - 6 + t_1$$
, $9m + 5 = 1 + t_2$,
 $20m + 8 = m - 6 + t_3$, $54m + 15 = m - 6 + t_4$,
where the t_i occur in the table.

For $m \ge 8$, Theorem 4 now follows since

$$9m + 6 = 1 + 2(3m + 3) + 3m - 2 + 1$$
, $20m + 9 = m + 2$
 $+ 6m + 4 + 10m + 5 + 3m - 2$,
 $54m + 16 = 2(3m + 3) + 45m + 10 + 3m - 2 + 2$.
For $m = 7$, $E = 2$, $d = 6$, $P = 37$,

$$U = 168A - 6327$$
, $V = 14A - 3$, $W = 21A - 962$, $F/7 = 7A^2 - 826A + 131149$,

and F>0 for every A>0. But if we attempt to use E=1, we have d=8; the discussion for $m \ge 8$ now applies also for m=7 except when A=54m+16=394. This proves both parts of Theorem 4 if m=7.

Next, let m = 6. Then E = 1, d = 6, P = 32,

$$U = 9(16A - 512), V = 4(3A + 1), W = 18A - 704,$$

 $F/36 = (7A - 116)^2 - (3A + 1)(16A - 512) = (A - 52)^2 + 11264.$

The minor conditions in I are all satisfied if $A \ge 44$. For m=6, Table II includes all numbers less than 44 except 33=1+2(3m-2).

Let m = 5. Then E = 0, d = 10, P = 67,

$$U = 120A - 3159$$
, $V = 10A + 9$, $W = 15A - 956$, $F/25 = (A - 703)^2 - 457878 > 0$ if $A \ge 1380$.

It was verified that every integer ≤ 1380 is a sum by four of 4, 13, and polygonal numbers of order 7, whence E=0.

Let m=4. Then n=-18, c=10, A=2a-9b+40. Our general method requires that a and b be odd and applies only when A is odd. By (10) with r=0, $b\equiv A \pmod 4$. Hence d=4, P=6,

$$U = 4(24A - 495), V = 4(2A + 1), W = 4(3A - 63),$$

 $F/16 = (7A - 61)^2 - (2A + 1)(24A - 495) = A^2 + 112A + 4216,$

whence F>0 for every $A \ge 0$. The minor conditions in I are all satisfied if $A \ge 28$. For m=4, Table II includes all integers ≤ 28 except 26 = m+2+2(3m-2).

Next, let A be even. Since b must be even, our previous method is not applicable.

LEMMA 3.* If b = 2B, a is even, $a - B^2$ is a sum of three squares, and

^{*} Legendre, Théorie des Nombres, ed. 3, II, No. 628, with omission of denominator 2 in No. 629.

$$(12) 4B^2 + 2B + 1 > 3a,$$

then $a = \sum \alpha^2$, $b = \sum \alpha$ have solutions α , β , γ , δ in integers ≥ 0 .

Write A = 2S. Then a = S + 9B - 20. Inserting this value of a into (12) and multiplying by 16, we see that (12) holds if

$$(13) 8B > 25 + u^{1/2}, u = 48S - 351 \ge 0.$$

Similarly, $B^2 < a$ if

$$(14) 2B < 9 + v^{1/2}, v = 4S + 1.$$

Take $B \equiv 2 - S \pmod{4}$. Then $a \equiv 2 \pmod{4}$, $a - B^2 \equiv 1$ or 2 (mod 4), according as B is odd or even. Hence $a - B^2$ is a sum of three squares, and all conditions in Lemma 3 are satisfied.

To insure the choice of B as a prescribed residue modulo 4, we require that the difference between the limits for B, determined by (13) and (14), shall exceed 4. The resulting inequality reduces as usual to

$$S^2 - 340S + 2440 > 0$$
, $S \ge 333$.

It remains only to verify Theorem 4 for m=4 when A is even and <666. This was done above when $A \le 28$. Table II includes all integers from 28 to 238 except 236; Table I includes all from 235 to 666.

7. Excess when $k \ge 3$. Evidently E(m-2) = m-6. If m = 7,

394 = 54m + 16 = 6m - 3 + 2(10m + 5) + 28m + 8 + 1. Hence Theorem 4 implies the cases $m \ge 7$ of

THEOREM 5. For $k \ge 3$, E = m - 6 if $m \ge 7$, E = 1 if m = 6.

That E=1 if m=6 follows from Theorem 4 and a result to be proved in a later paper on extended polygonal numbers. It was verified that 116 (or 980) is the least positive integer which is not a sum by four of the values of (1) for $x \ge 0$, k=4 (or k=5). For $x \ge 0$, the values >1 of (1) are all $\le m-1$. Hence the proof in § 5 shows that Theorem 3 holds also when k>1.

8. THEOREM 6. If m=6, k=5, E(A)=0 except for $A\equiv 4\pmod 8$.

If A is odd, our general method applies with

$$d = 6$$
, $U = 144(A - 119)$, $V = 12A + 16$, $P = -4$.

Then (14) and hence (13) of I holds. Also, (9) hold if $A \le 344$, which is below the limit 980 for which E = 0 (§ 7).

Next, let $A \equiv 2 \pmod{4}$. Take b = 2B and determine B modulo 3 to make a an integer. Then $a \equiv 2 \pmod{4}$. Apply Lemma 3. Then (12) holds and $B^2 < a$ if

$$4B > 31 + u^{1/2}$$
, $3B < 32 + v^{1/2}$, $u = 4A - 403$, $v = 3A + 4$.

The difference between these limits for B exceeds d if

$$4v^{1/2} - 3u^{1/2} > R = 12d - 35.$$

Here d = 3 and (15) holds for every A such that u > 0.

Finally, let $A \equiv 0 \pmod{8}$. Take an odd B such that a is an integer, whence d = 6. Then $a \equiv 4 \pmod{8}$ and Lemma 3 applies. The square of (15) holds if

$$(A - 491)^2 > 65712, \quad A \ge 748.$$

THE UNIVERSITY OF CHICAGO