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AN ANALYSIS OF SOME GENERAL PROPOSITIONS* 

BY C. H. LANGFORD 

1. Introduction. General propositions are commonly 
described as being those propositions which arise from 
matrices by generalization, that is, as being such propositions 
as can be derived from some matrix by the attachment of an 
applicative, "some" or "every," to each variable constituent 
of the matrix.f In this paper an analysis of general propo­
sitions is suggested, which results from a slightly different 
view of the relations of general propositions to matrices. I t 
appears that the analysis which is suggested involves a 
generalization of the ordinary analysis. 

2. Unanalysed Propositions. We may begin with a 
consideration of elementary matrices whose values are 
elementary functions of unanalysed propositions, such as, 
for example, po q. Let to denote any elementary proposition. 
Then we can write, for example, W . ^ H , that is, every 
elementary proposition is true or false. If po, <Zo denote 
elementary propositions, then, of course, po^qo denotes 
elementary propositions; but this latter, more complex 
function denotes a narrower range of propositions than does 
t0f since whatever is an elementary proposition of the form 
po => qo must be an elementary proposition of the form to, 
but not conversely. Let h denote any elementary matrix. 
Then h denotes what denotes elementary propositions; 
t\ denotes to, po ̂  Qo, and the like, which denote elementary 
propositions. Now we can form such functions as pi D qit 

which denote a narrower range of matrices than does t\. 
Since elementary matrices are neither true nor false, we 

cannot say (/i). h v ~t\ ; but we can say 

( / i ) : ( * o ) . * o V ~ / 0 , 

* Presented to the Society, September 9, 1927. 
f See Principia Mathematica, second edition, vol. 1, p. xxiii. 



1927-1 ANALYSIS OF PROPOSITIONS 667 

that is, every value of every matrix is true or false. Variables 
such as /o, h fall into a hierarchy of values and values of 
values. We can write such propositions as (h) : ( 3/0). Zo, 
tha t is, some value of every matrix is true (which is false), 
and ( Bh) : (/0). t0, that is, all values of some matrix are true 
(which is true) ; and we have, of course, 

(*i)(*o).*o. v .(3/i)(3*o).~/o, 

(/i)(3/o).*o. V .(3/ i)(*o).~*o, 

and the like. Consider the proposition 

(*i).(*o)*ov(a/0)~*o, 

that is, every matrix is such that all of its values are true or 
at least one of its values is false. This proposition, although 
a consequence. of the proposition {p).p v ~py cannot be 
stated without the use of some variable such as t\. We have 
also, of course, 

(fa) : (/i) ( 3*o) Jo. v . ( 3/0 (to). ~ / 0 , 

which is different from 

( / i)(3/0) . /o. V . ( 3 / i ) ( / 0 ) . ~ / o ; 

and it would seem that the proposition 

(3fa):(0(a'o).*o. v . (3 / i ) ( /o) .^o 

is not equivalent to any proposition which can be stated 
without the use of some variable such as fe. 

3. Values of Functions and Species of Functions. There 
are two ways in which inferences can be drawn from universal 
propositions of the kind with which we are concerned: we 
can replace a universally quantified function by one of the 
values which it denotes, and we can replace a universally 
quantified function, as genus, by a more determinate function, 
as species.* Thus, 

(/i).(3/o)*oV(*o)~/o 

* See Principia Mathematica, second edition, vol. I, p . xxiii. 
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implies 
a(i>oVg0)^oVgo. v . ( ^ v g 0 ) . ^ o . ^ o , 

that is, 
(3po,q0).poVq0. v . (p0, q0). ~p0. ~qQ. 

Again, 

(/ i)(aio)./ovM0 

implies 
(piV q{)B(poV q0):p0v q0. D .p0vqQ, 

tha t is, 
(pi,qi)(Bpo,q0)'-poVq0. 3 .p0vq0. 

It is to be noted that gewws and species are to be understood 
in intension : being a function of the form pi v #1 entails 
being a function of the form h ; and this is the ground of the 
implication. There are two ways in which particular 
propositions can be inferred : we can infer a particular propo­
sition from an instance of the function which is quantified 
particularly, and we can infer a particular proposition from 
a more determinate particular proposition. Thus, (to). ^ v M o 
implies ( 3/i)(/0).^o; and 3(p0.q0) .po.qo implies ( 3 / 0 ) .h. 

4. Analysed Propositions. Heretofore we have been con­
cerned with matrices whose values are elementary functions 
of unanalysed propositions, and we have illustrated the way 
in which a hierarchy of functions can be formed in this 
connection. Thus we may have 

^ v g 2 , 

which has as a typical value 

pi.pi. v.qi.q', 

which has as a typical value 

fi * S{ .To" O So". V .tó D UÓ J o ' ^ W ' , 

which has as a value any elementary proposition of this 
form.* I wish to explain how a similar hierarchy can be 
formed in connection with analysed propositions. A propo-

* See Principia Mathematica, loc. cit., p. xxxi, etc. 
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sition is a value of a function if the function can be obtained 
by replacing constituents of the proposition by appropriate 
variables. We are to consider propositions which are values 
of relational functions, such as the proposition "a gives b 
to c." This proposition is a value of each of the functions 
"a gives b to x" f {a, b, c), f(a),f(x), f(x, y, z), among others. 
Commonly, one and the same proposition is open to various 
analyses. If we consider an appropriate constituent of a 
relational proposition, two entities appear which can be 
replaced by variables, namely this constituent and the re­
mainder of the proposition. I t is, however, often difficult 
to decide what are the constituents of a proposition which 
can be replaced by variables. 

Now a proposition of the form Rab is a value of the func­
tion Ray; and it is clear that Ray can be obtained from Rxy 
by replacing x by a. We may indicate this order of denoting 
by writing Rxiy0; so that Rx±y0 denotes Ray0, which denotes 
Rab. Subscripts indicate parameters of various orders, 
and accordingly they indicate the order of denoting; so 
that the subscript which attaches to a variable determines 
the point in the hierarchy at which the variable takes values. 
Thus a function f(x, y, z) is ambiguous as regards the para­
metric order of its variable constituents. We may have 
/i(*o, yo, zo), which denotes "x0 gives y0 to s0," which denotes 
"a gives b to c" ; or, we may have fo(xi, yi, Si), which denotes 
fo(a, b,c), which denotes "a gives b to c"; and so on. It is 
clear that, as a result of this analysis, we can attach an 
applicative, "some" or "every," to the entire function at 
each stage of the hierarchy. If we apply "some" to fi(xo, y0, 
Zo) and "every" to fo(x0, y0> z0), we have 

3/i(^o,3;o,2o):(/o(^o,3;o,2o))./o(^o,3;o^o), 

which corresponds to ( 3/) : (x, y} z) ,f(x, y, z) in the ordinary 
analysis; whereas, if we apply "some" to fo(xi, yu Z\) and 
"every" to fo(x0t yo, So), we have 

3M%i,yi,Zi)'-(fo(xQ,yo,Zo)) .fo(xo,yo,Zo), 

which corresponds to ( 3x, yy z) : (ƒ) .ƒ(#, y, z). 
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Now although the proposition (fiXo) l (foXo)./0x0 cor­
responds to (ƒ) : (x) .fxy there is an important difference 
between these propositions which I wish to point out. When 
we say (ƒ) : (x) .fx, it is presupposed that each value of x 
can be combined with every value of ƒ to form a significant 
proposition; whereas, no such presupposition as this is 
involved when we write (fiXo) : (/o#o) ./o#o. If there should 
be values of/0, say ƒ', f " ' , and values of x0, say x', xn\ such 
that fx' and f'x", but such that fx" and f'x' are non­
significant, this fact would not render (fiXo) : (foXo) ./o#o 
either false or non-significant. A matrix is to be regarded 
as taking such values as exhibit the form of the matrix; 
and the values taken by a variable constituent of a matrix 
depend upon the matrix in which the variable occurs. I t is 
therefore possible that (fix0) : (/o#o)./o#o should have a wider 
reference than (ƒ) : (x) .fx. 

5. Analysed and Unanalysed Propositions. I wish now 
to consider functions whose values are elementary functions 
of analysed propositions, and to inquire how, if at all, the 
denotative hierarchy for elementary functions of unan­
alysed propositions can be combined with the hierarchy 
for analysed propositions. We have such propositions as 
(fiXo)(Bf0xo).foXo and ( Bf0xi)(f0Xo) foX0. Now it appears 
that we can extend the range of t0) h, • • • so as to include 
such functions as foX0, fiX0l • • • . This can be seen to be 
possible by noting that f0Xo is a species of /o> and that 
fiXo is a species of h. An analysed function will have the 
order of its constituents of highest parametric order. I t is 
clear that, for example, (fox0) .foXo v ~foxo follows from 
W i o V H , and that (/o#o)/o#oV ( 3f0x0) ~foXo follows from 
(/o).*oV (Bto)~h; and also that ( 3/o^o)/o^o entails ( 3/oKo. 
Consider the proposition 

(a) (*i).(3/o)*oV(/0)~/o. 

If we choose/iXo as a species of h, (a) is seen to entail 

(f).(3x)fxv(x)~fx ; 
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but if we choose f 0X1 as a species of /1, (a) is seen to entail 

(x).(Bf)fxv(f)~fx. 

Functions of any number of variables can replace h, but, in 
any case, doubly-quantified propositions result. Of course, 
we can assign values to /1, instead of replacing it by species. 
We can, for example, substitute fxo (where ƒ is constant), 
so that we have 

(Bx)fxv (x)<^fx ; 

or, if we substitute /0a, we have 

(sf)fav(f)~fa. 

This analysis gives us a certain advantage as against the 
ordinary analysis. In the ordinary analysis, we can write 
(p) .pv ~p, and derive, as a species, (ƒ, x) .fxv ~fx; but 
this is confined to singly-quantified propositions, that is, to 
propositions involving a single applicative, "some" or 
"every"; whereas, we are now able to write, say, (pn) • • • 
( Bpo).p0 v ~po> which is a proposition involving n + 1 ap­
plicatives. 

6. Multiply-Quantified Propositions. Let F(t0) denote an 
elementary function of to. Then it is clear that (t0). F(t0) 
implies (h) : (to). F(t0). Similarly, (h) : (t0). F(to) implies 
(h):.(h):(to).F(t0). Now (3t0).F(to) can be obtained from 
(to). F(t0) ; and generally, in a function of the form (tn) • • • 
^(^0), we can turn any universal variable into a particular 
variable. Accordingly, any proposition on F(t0), of whatever 
degree of quantification, can be obtained from (t0).F(to). 

In the argument of the last paragraph, we have used F (to) 
to denote an elementary function of /0; but I should like to 
point out that it is not at all necessary to employ such ex­
pressions as F(t0). The proposition ( BF): (t0) .F(t0), for 
example, expresses what is expressed by ( 3/i) : (/0). to. We 
can express the proposition 

(F):(to).F(to).*.(h)(t0).F(to) 
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in the following way. Note that ( 3/0) Jo is equivalent to 
( Bh)( Bt0) Jo; so that we can write 

(fa):(a/i)(a/o).~^o. v.(0(/o)Jo. 

Mr. Russell has shown how elementary functions of propo­
sitions that are not elementary can be derived from ele­
mentary matrices.* Thus, (x) .fx v ~fx implies (x)( By) .fx 
v ~fy, which is equivalent to (x)fx v ( By)~fy. In precisely 
the same way, 

( / i )( /o) . /oV~/o 
implies 

which is equivalent to W.Oo) /ov(3 /o )^o , which implies 

(ti)(Bui) .(u0)u0V (3to)~t0, 

which is equivalent to 

(a*i)(/o)/oV(*i)(3*o)~/o. 

I t is clear that elementary functions of propositions of the 
first and second orders can be derived in this way, whatever 
the degree of quantification of these propositions. Moreover, 
from (h). ( 3/o)^o we derive both ( Bx)fx and ( 3/)/a, although 
one of these latter propositions would be said to be of the 
first order and the other of the second order. Furthermore, 
in a proposition such as (t0)to there seems to be no reason for 
restricting /0 to elementary propositions; it can denote 
propositions of the first and second orders as well. Let 
"( Bx) .a gives b to x" be denoted by f (a, b). Then 

(aa,b)f(a,b)v(a,b)~f(o9b) 
results from 

(*i).(a/0)*ov(*o)~*o. 

I t does not matter that ƒ is not elementary, since it occurs 
as an unanalysed constituent. 

HARVARD UNIVERSITY 

* See Principia Mathematica, loc. cit., *8. 


