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SOME THEOREMS CONCERNING 
MEASURABLE FUNCTIONS* 

BY L. M. GRAVESf 

Theorems on the measurability of functions of measurable 
functions, e. g., in the form F(x) = f[x, g(x)], have been 
given by Carathéodory and other writers.^ Our Theorem I 
is an easy generalization of the one given by Carathéodory 
on page 665, with a slightly different method of proof. 
Here the function ƒ(#, y) is supposed to be defined for 
all values of y. Our Theorem II merely applies Theorem I 
to certain cases when the function ƒ(#, y) is not defined for 
all values of y. In these theorems the variables x and y 
may be multipartite. Theorems I and II are still valid if, 
throughout, measurable is replaced by Borel measurable. 

In Theorem II I , we consider a summable function ƒ(x, y) 
of two variables, and show by means of Theorem I that 
the function of x alone 

I f(x,y)dy 

is also summable, under a suitable convention. 
Notations. In Theorems I and II we use the following 

abbreviated notations : The point (xi, • • • , Xk) in k-
dimensional space, we denote simply by x. The #-space 
as a whole is denoted by the German 96. We do similarly 
for the w-dimensional space §). When we have to speak 
of the (k+m)-dimensional space ($, §D), we may denote 

* Presented to the Society, April 2, 1926. 
t National Research Fellow in Mathematics. 
Î See Carathéodory, Vorlesungen uber réelle Funktionen,pp. 376,377,665; 

Hans Hahn, Theorie der reellen Funktionen, p. 556. 
Hobson, Theory of Functions of a Real Variable, 2d éd., vol. 1, p. 518. 
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it by 28. Corresponding to a set 3B(0) of points of the 
space SB and a point y of the space §), we denote by 
3£(î/) the set of all points x such that (x, y) *s l n SB(0). 
The sets §)(:c) are defined similarly. A set of m functions 
gi(*0> • • • > gm(#)> each single-real-valued on a set 3Ê(0) 

of the space 36, will be denoted simply by g{x), and called 
a function on 36(0) to §). This function is said to be measurable 
on 36(0) if each component is measurable. We denote by 
[y]a the closed neighborhood of the point y consisting of 
all those points y distant from y by not more than a. 

THEOREM I. Let 36(0) be a measurable set, and let f(x, y) 
be a single-real-valued function on 36(0)g) with the properties 
(1) ƒ is measurable on 36(0) for each y, and (2) ƒ is continuous 
in each argument y3', either on the right or on the left, when 
the other variables are fixed. Then if g{x) on 36(0) to §) is 
measurable on 36(0), so is the function f (x, g(x)). 

We take first the case m = 1, and assume (to fix the ideas) 
that ƒ is continuous on the left in y. We construct a se­
quence {irn} of partitions of the y-axis, for example by 
taking the division points in Tn to be 

i 
Li = —, ( i = - o o , • • • , + oo). 

n 

Then the set H{ni) of points of the measurable set X(0) for 
which ln%^g{x) <Zn, i + 1, is measurable, and we have 

]T) # ( n i ) = 36(0) 

i 

for every n. We construct a sequence {gn(x)} of functions 
measurable on 36(0) and approaching g(x) from the left 
by setting gn(x)=lni on the set 36(ni). Hence the function 
f(x, gn(x)), which equals/(x, lni) on the set H{ni\ is measur­
able on 36(wi), and therefore measurable on 36(0). Since ƒ is 
continuous on the left in y, we have lim f(x} gn(x)) =ƒ(#, g(#)), 
and the last named function is also measurable on X(0). 

We complete the proof by induction. By the theorem 
for m, f(x, g(x), ym+i) is measurable on 36(0) and continuous 
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(right or left) in ym+i. Hence, by the proof just given, 
f(x, g(x)f gm+i(x)) is measurable. 

THEOREM I I . Let the set SB(0) and the function f(x, y) 
single-real-valued on^0) be such that (1) for each y,fis measur­
able in x on every measurable set contained in #(2/), and (2) 
for each x, ƒ is continuous on y in $)(xK Let 36(0) be a measur­
able set, and let g(x) be a function on £(0) to g), which is measur­
able on 36(0), and such that for a fixed positive number a, the 
neighborhood [g(x)]a is in $)(x) for every x. Then the function 
f(x, g(x)) is measurable on $ (0). 

Divide the space g) into a denumerable infinity of "cubes" 
g)0), with edges parallel to the axes of the space, and maxi­
mum diameter less than or equal to the number a. Let 
ï 0 ) be the subset of £(0) on which g(x) is in the set §)0). 
Then each £('-) is measurable, being a product of measurable 
sets, and ^ ^ O ) = ï(0)- We consider hereafter only those 
values of j for which # 0 ) is not empty. Let yU) be the center 
of the "cube" g)<'\ Then for every x in £ ( / ) , the point g(x) 
is contained in the closed neighborhood [yU)]b (where 2& = a), 
and the neighborhood [yU)]b in turn is contained in the 
neighborhood [g(x)]a

 a n (^ hence in the set g)(a0. We can 
now define a function F(x, y) on 36<*7:> g), equal to f(x, y) on 
%w[yM]bt measurable on 3Ê(/) for every y, and continuous 
on g) for every x. E. g., for points y not in [yu)]b, set F(x, y) = 
f(x, yU)+c(y—yu))), where b = cX distance from y to yu\ 
Then by Theorem I, F(x, g(x)) =f(x, g(x)) is measurable 
on the set £ ( / ) . Hence/(x, g(x)) is measurable on 3E(0). 

In the proof of Theorem III , we shall need the following 
preliminary theorem. (We now drop the abbreviated 
notation of the preceding paragraphs.) 

Suppose the single-real-valued function f(x, y) is summable 
on the rectangle a^x^b, c^y^d. Then there exists a set 
@ of points of the interval (a, b) such that : 

(1) measure of (& = b — a; 
(2) the integral 

I f(*,y)dy = g(*,y) 
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exists for every x in the set (2 and every y in (c, d) ; 
(3) g(x, y) is measurable in x on (§, for every y\ 
(4) \g(x, y)\ SM(x) for every y, where M(x) is summable 

on S. 
When we take y — d% the statements of this theorem are 

at least implicitly contained in every treatment of the 
reduction of a double integral of a summable function to 
two successive simple integrals.* We obtain the theorem 
stated for a value y = yo<d by replacing ƒ (x, y) by a func­
tion fo(x, y), equal to ƒ for c^y^yo, and zero for yo<y^d. 
I t is readily seen that the set (§ effective for y — d is effective 
for all values of y. To obtain the fourth conclusion, we have 

\g(x,y)\£ I \f(x,y)\dy£ I \f(x,y)\dy. 
«/ c *J c 

THEOREM III. Suppose the function f {x, y) is summable on 
the square a^x^b, a^y^b. Then there exists a set S of 
points of (a, 6), whose measure is (b — a), such that the function 

! 
f(x9y)dy 

is summable on @. 

By our preliminary theorem, the function 

g(x,y) = I f(x,y)dy 
J a 

is measurable in x on a set (S with the specified properties, 
and satisfies the condition \g(x, y)\SM{x)> where Mix) is 
summable on @. It is also continuous in y on (a, b). Hence 
we can extend the range of definition of the function g(x, y) 
so that the conditions of Theorem I will be satisfied. This, 
with the inequality \g(x, x)\^M(x), shows that g(x, x) is 
summable on @. 

* See de la Vallée Poussin, Intégrales de Lebesgue, pp. 50-53 ; or BUL­
LETIN DE L'ACADÉMIE DE BELGIQUE, Sciences, 1910, p. 768. 
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Various modifications of Theorem III may easily be 
secured. For example, in case we make the additional 
assumptions that the function f(x, y) is bounded and is 
measurable in y for each xy then the set (S may be replaced 
by the interval (a, b). These additional assumptions are 
fulfilled in particular if ƒ is bounded and Borel measurable 
on the square where it is defined. In this case the function 
g(x, x) is Borel measurable on (a, b). As another modifica­
tion we may substitute for the square a^x^b, a^y^b, a 
bounded measurable set @0@o, consisting of those points 
of the plane having x and y each in a linear measurable 
set So. Then the integral is understood to be taken over 
those points of the interval {a, x) contained in @o. 

HARVARD UNIVERSITY 

A GENERAL THEORY OF REPRESENTATION OF 
F I N I T E OPERATIONS AND RELATIONS* 

BY B. A. BERNSTEIN 

Let a mod n denote the least positive residue modulo n 
of an integer a, i. e., the least positive integer obtained 
from a by rejecting multiples of n. Consider the polynomials 
modulo a prime p 

(1) a0 + ai x + • • • + aP-itf
p~"1, mod p, 

(2) fo(x) +fi(x)y + • • • +fp-i(x)y»~\ mod p9 

where in (1) a» are least positive ^-residues and x ranges 
over the complete system of least positive ^-residues, and 
where (2) is a polynomial modulo p in y whose coefficients 
fi(x) are modular polynomials in x of form (1). In a previous 
paperf I developed a theory of representation of abstract 

* Presented to the Society, San Francisco Section, October 25, 1924. 
t PROCEEDINGS OF THE INTERNATIONAL MATHEMATICAL CONGRESS, 

TORONTO, 1924. 


