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SOME THEOREMS CONCERNING
MEASURABLE FUNCTIONS*

BY L. M. GRAVEST

Theorems on the measurability of functions of measurable
functions, e. g., in the form F(x)="f[x, g(x)], have been
given by Carathéodory and other writers.] Our Theorem I
is an easy generalization of the one given by Carathéodory
on page 665, with a slightly different method of proof.
Here the function f(x, y) is supposed to be defined for
all values of y. Our Theorem II merely applies Theorem I
to certain cases when the function f(x, ¥) is not defined for
all values of y. In these theorems the variables x and ¥y
may be multipartite. Theorems I and II are still valid if,
throughout, measurable is replaced by Borel measurable.

In Theorem III, we consider a summable function f(x, ¥)
of two variables, and show by means of Theorem I that
the function of x alone

f:f(x,y)dy

is also summable, under a suitable convention.

Notations. In Theorems I and II we use the following
abbreviated notations: The point (%1, - - -, xz) in k-
dimensional space, we denote simply by x. The x-space
as a whole is denoted by the German X. We do similarly
for the m-dimensional space . When we have to speak
of the (k-+m)-dimensional space (¥, 9), we may denote

* Presented to the Society, April 2, 1926.
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1 See Carathéodory, Vorlesungen iiber reelle Funktionen,pp. 376,377,665;
Hans Hahn, Theorie der reellen Funktionen, p. 556.
Hobson, Theory of Functions of a Real Variable, 2d ed., vol. 1, p. 518.
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it by . Corresponding to a set W of points of the
space W and a point ¥y of the space 9, we denote by
XW the set of all points x such that (x, y) is in BWO.
The sets 9@ are defined similarly. A set of m functions
gi(x), « + -, gu(x), each single-real-valued on a set %
of the space ¥, will be denoted simply by g(x), and called
a function on ¥ t0 ). This function is said to be measurable
on X© if each component is measurable. We denote by
[y]a the closed neighborhood of the point y consisting of
all those points  distant from y by not more than a.

THEOREM I. Let X be a measurable set, und let f(x, y)
be a single-real-valued function on XY with the properties
(1) f is measurable on X for each v, and (2) f is continuous
in each argument y;, either on the right or on the left, when
the other variables are fixed. Then if g(x) on X to 9 is
measurable on X, so is the function f(x, g(x)).

We take first the case m =1, and assume (to fix the ideas)
that f is continuous on the left in y. We construct a se-
quence { 1rn} of partitions of the y-axis, for example by
taking the division points in m, to be

lrn'=’_", (i=—oo,~--,+oo).

Then the set X*? of points of the measurable set X for
which 1,;<g(x) <l., i+1, is measurable, and we have

D xmD = %O

for every n. We construct a sequence {gn(x)} of functions
measurable on % and approaching g(x) from the left
by setting g.(x) =I.; on the set ¥»?. Hence the function
f(x, ga(x)), which equals f(x, I,;) on the set X?, is measur-
able on X9 and therefore measurable on X(®. Since f is
continuous on the left in v, we have lim f(x, g.(x)) =f(x, g(x)),
and the last named function is also measurable on X(®.

We complete the proof by induction. By the theorem
for m, f(x, g(x), Ymi1) is measurable on ¥ and continuous



1926.] MEASURABLE FUNCTIONS 531

(right or left) in ys.. Hence, by the proof just given,
f(x, g(x), gni1(x)) is measurable.

TuEOREM II. Let the set W and the funciion f(x, y)
single-real-valued on W be such that (1) for each v, f is measur-
able in x on every measurable set contained in XW, and (2)
for each x, f is continuous on y in Y®@. Let X be a measur-
able set, and let g(x) be a function on ¥ to 9, which is measur-
able on X9, and such that for a fixed positive number a, the
neighborhood [g(x)]. is in Y@ for every x. Then the function
f(x, g(x)) is measurable on £,

Divide the space 9 into a denumerable infinity of “cubes”
9@, with edges parallel to the axes of the space, and maxi-
mum diameter less than or equal to the number a. Let
X@ be the subset of %(® on which g(x) is in the set 9@,
Then each X is measurable, being a product of measurable
sets, and »_ X@=X®, We consider hereafter only those
values of j for which ¥ is not empty. Let @ be the center
of the “cube” 9@. Then for every x in %, the point g(x)
is contained in the closed neighborhood [y¢"], (where 2b=a),
and the neighborhood [y®], in turn is contained in the
neighborhood [g(x)], and hence in the set 9@. We can
now define a function F(x, y) on X9, equal to f(x, y) on
XD [y®],, measurable on X for every y, and continuous
on Y forevery x. E.g., for points y notin [y}, set F(x, y) =
flx, y@ 4c(y—yD)), where b=c¢ X distance from y to ¥,
Then by Theorem I, F(x, g(x)) =f(x, g(x)) is measurable
on the set X”. Hence f(x, g(x)) is measurable on X©.

In the proof of Theorem III, we shall need the following
preliminary theorem. (We now drop the abbreviated
notation of the preceding paragraphs.)

Suppose the single-real-valued function f(x, y) is summable
on the rectangle a Sx=b, cSy=<d. Then there exists a set
€ of points of the interval (a, b) such that:

(1) measure of €=b—a;

(2) the integral

f f(x,9)dy = g(%,9)
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exists for every x in the set € and every y in (¢, d) ;

(3) g(x, v) is measurable in x on G, for every y;

4) |g(x, y)l S M(x) for every v, where M(x) is summable
on @.

When we take y=d, the statements of this theorem are
at least implicitly contained in every treatment of the
reduction of a double integral of a summable function to
two successive simple integrals.* We obtain the theorem
stated for a value y=1y,<d by replacing f(x, ) by a func-
tion fo(x, ), equal to f for c <y =y, and zero for y,<y=d.
It is readily seen that the set € effective for y=d is effective
for all values of y. To obtain the fourth conclusion, we have

sl = [y s [ ] o,

TrEOREM 111. Suppose the function f(x, y) is summable on
the square a <x=<b, a<y=<b. Then there exists a set € of
points of (a, b), whose measure is (b—a), such that the function

] fz,9)dy

is summable on @.

By our preliminary theorem, the function
Yy

is measurable in x on a set € with the specified properties,
and satisfies the condition lg(x, y)| £ M(x), where M(x) is
summable on €. It is also continuous in ¥ on (g, b). Hence
we can extend the range of definition of the function g(x, ¥)
so that the conditions of Theorem I will be satisfied. This,
with the inequality Ig(x, x)| < M(x), shows that g(x, x) is
summable on G.

* See de la Vallée Poussin, Intégrales de Lebesgue, pp. 50-53; or BUL-
LETIN DE L’ACADEMIE DE BELGIQUE, Sciences, 1910, p. 768.
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Various modifications of Theorem III may easily be
secured. For example, in case we make the additional
assumptions that the function f(x, ) is bounded and is
measurable in y for each x, then the set € may be replaced
by the interval (e, b). These additional assumptions are
fulfilled in particular if f is bounded and Borel measurable
on the square where it is defined. In this case the function
g(x, x) is Borel measurable on (a, b). As another modifica-
tion we may substitute for the square a =x<b, a<y=b, a
bounded measurable set €;&,, consisting of those points
of the plane having x and y each in a linear measurable
set €. Then the integral is understood to be taken over
those points of the interval (a, x) contained in G,.

HARVARD UNIVERSITY

A GENERAL THEORY OF REPRESENTATION OF
FINITE OPERATIONS AND RELATIONS*

BY B. A. BERNSTEIN

Let @ mod » denote the least positive residue modulo 7
of an integer a, i. e., the least positive integer obtained
from a by rejecting multiples of #. Consider the polynomials
modulo a prime p

1) G+ a1% + - -+ @127, mod p,

(2) fo®) + fi®)y + - - + fo—a(®)y*7!, mod p,

where in (1) a; are least positive p-residues and x ranges
over the complete system of least positive p-residues, and
where (2) is a polynomial modulo p in y whose coefficients

fi(x) are modular polynomials in x of form (1). In a previous
papert I developed a theory of representation of abstract

* Presented to the Society, San Francisco Section, October 25, 1924,
{ PROCEEDINGS OF THE INTERNATIONAL MATHEMATICAL CONGRESS,
ToronTO, 1924,



