A NOTION OF UNIFORM INTEGRABILITY*

BY R. E. LANGER AND J. D. TAMARKIN

The necessary and sufficient condition that a function f(x) of the real variable x be integrable in the sense of Riemann on the interval (a,b) is that there correspond to an arbitrary small positive number ϵ a positive δ such that for any subdivision of (a,b) by points

$$x_0 = a \le x_1 \le x_2 \le \cdots \le x_{n-1} \le x_n = b ,$$

subject to the condition $x_i - x_{i-1} < \delta$, the inequality

$$\sum_{i=1}^{n} (U_i - L_i)(x_i - x_{i-1}) \leq \epsilon$$

is valid. In this, U_i and L_i represent, respectively, the upper and lower bounds of f(x) on the subinterval (x_{i-1},x_i) .

In the direct extension of this definition to a function which involves besides the variable of integration also other parameters, it may or may not be possible in any particular case to satisfy the conditions above by a constant δ independent of the parameters. In this connection the following concept may be of interest.

A function $f(x,\lambda)$ shall be defined to be integrable with respect to x on (a,b) uniformly in λ , provided that there corresponds to an arbitrary positive ϵ a positive constant δ independent of λ , such that

(1)
$$\sum_{i=1}^{n} \left\{ U_{i}(\lambda) - L_{i}(\lambda) \right\} (x_{i} - x_{i-1}) \leq \epsilon \cdot \dagger$$

If $f(x,\lambda)$ is complex, it shall be said to be uniformly integrable if both its real and its imaginary parts are uniformly integrable.

^{*} Presented to the Society, May 1, 1926.

 $[\]dagger$ The extension of this definition to the case when f involves a greater number of parameters, real or complex, is, of course, immediate.

As an application of this notion of uniform integrability we establish the following theorem.

THEOREM. If the function $f(x,\lambda)$ of the real variable x and the complex parameter λ is, in the region

$$0 \le a \le x \le b$$
, $R(\lambda) \le M \ge 0$,

defined, uniformly bounded, and integrable with respect to x, uniformly in λ , then the integral

$$I(f) = \int_{a}^{b} e^{\lambda x} f(x, \lambda) dx$$

approaches zero uniformly in λ as $|\lambda|$ becomes infinite.

It is sufficient for our purpose to give the proof for the real part only of the given function, $f^{(1)}(x,\lambda)$. Because of the uniform integrability of $f^{(1)}(x,\lambda)$, we may, when ϵ is assigned, determine δ so that (1) is satisfied. Then choosing on each subinterval (x_{i-1},x_i) a value $P_i(\lambda)$ subject to the conditions

$$L_i(\lambda) \leq P_i(\lambda) \leq U_i(\lambda)$$
,

and defining the auxiliary stepfunction $\psi(x,\lambda)$ as the function taking the value $P_i(\lambda)$ on (x_{i-1},x_i) we have

$$I(f^{(1)}) = I(\psi) + I(f^{(1)} - \psi)$$
.

Now on the one hand

$$|I(\psi)| = \left| \sum_{i=1}^{n} P_i(\lambda) \cdot \frac{e^{\lambda x_i} - e^{\lambda x_{i-1}}}{\lambda} \right|,$$

whence, since $|P_i(\lambda)| \leq k$ because $f^{(1)}$ is uniformly bounded,

$$|I(\psi)| \leq \frac{2kne^{Mb}}{|\lambda|}$$
.

On the other hand since $f^{(1)}$ is uniformly integrable

$$\begin{split} |I(f^{(1)}-\psi)\,\big| & \leq e^{Mb} \, \int_a^b \! \left| f^{(1)}(x,\lambda) - \psi(x,\lambda) \, \right| dx \\ & \leq e^{Mb} \, \sum_{i=1}^n \left\{ \, U_i(\lambda) - L_i(\lambda) \, \right\} \left(x_i - x_{i-1} \right) \leq e^{Mb} \epsilon \, \, . \end{split}$$

^{*} If these restrictions on x and λ are omitted, the reasoning employed leads to the result that $I(f) = e^{\lambda a} \epsilon(\lambda) + e^{\lambda b} \epsilon(\lambda)$, where each $\epsilon(\lambda)$ denotes some function which approaches zero uniformly as $\lambda \to \infty$. The symbol $R(\lambda)$ designates the real part of λ .

Hence

$$|I(f^{(1)})| \leq e^{Mb} \left[\frac{2nk}{|\lambda|} + \epsilon \right],$$

and since n is fixed when ϵ is given, the theorem is proved.

The situation changes materially when integrability is considered in the sense of Lebesgue. By definition, then, the integral of f is equal to the limit as $\delta \rightarrow 0$ of the series

(2)
$$\sum_{k=-\infty}^{\infty} y_k m E_x (y_{k-1} < f(x, \lambda) \leq y_k),$$

where $\cdots y_{-2} < y_{-1} < y_0 < y_1 < y_2 \cdots$ denotes an arbitrary subdivision of the range of functional values subject to the condition $y_k - y_{k-1} < \delta$. It would seem natural to define the integrability of $f(x,\lambda)$ as uniform, if for a given δ the approximation to the integral given by (2) is uniformly good. This fact, however, is already contained implicitly in the definition of the integrability.*

The theorem proved above is, however, not true if $f(x,\lambda)$ is merely integrable in the sense of Lebesgue. A further condition on the function must be imposed. As an example of such a condition we mention the following, that $f(x,\lambda)$ may be uniformly approximated to by a sequence of functions $f_i(x,\lambda)$, each of which is integrable with respect to x (in the sense of Riemann) uniformly in λ , the approximation being uniform in the sense that there corresponds to any given $\epsilon > 0$, a constant i_0 independent of λ such that

$$\int_a^b |f(x,\lambda) - f_i(x,\lambda)| dx < \epsilon \quad \text{for} \quad i \ge i_0.$$

In the important special case when f depends only on x this condition is always satisfied.

It should be noticed that the condition above does not suppose that the function $f(x,\lambda)$ is bounded.

DARTMOUTH COLLEGE

^{*} Cf. Carathéodory, Vorlesungen über reelle Funktionen, Leipzig-Berlin, 1918, pp. 450-453.