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SIMPLIFICATIONS RELATING TO A PROOF OF 
SYLOWS THEOREM 

BY G. A. MILLER 

Sylow's theorem is usually developed very early in a 
course relating to the theory of groups of finite order. 
Hence simplifications in its proof are the more desirable, 
especially when they enable us to avoid the use of a 
number theory formula and therefore to confine the proof 
more closely to group theoretic considerations. Since the 
simplifications which will be developed in what follows 
involve a property of double cosets which is not directly 
used in the proof tb which they relate* we shall first 
exhibit some of the fundamental properties of double co-
sets, assuming as known the fact that if S± and H2 are 
any two subgroups of a group G then all the operators 
of G may be uniquely represented in the following form. 
G = H^sJI^ + • • • + Jff^iZg if we assume that in each 
double co-set only the distinct operators are considered. 

The number of distinct operators in each double co-set 
is evidently divisible by h± and by h2j ht and h2 being 
the orders of Ht and H2 respectively. A necessary and 
sufficient condition that each of the given double co-sets 
contains the same number of distinct operators is that each 
of the conjugates of Hi under G has the same number 
of operators in common with H2. This is equivalent to 
saying that each of these conjugates of H2 has the same 
number of operators in common with Ht. When this 
number of common operators is k then the number of 
distinct operators in each of these co-sets is h-Jhlk, and 
vice versa. In particular, each of these double co-sets 
must involve the same number of distinct operators when­
ever at least one of the two subgroups Hx, H2 is invar­
iant under G, and each of the double co-sets with respect 

* Miller, BlicMeldt, and Dickson, Finite Groups, 1916, p. 27. 
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to Hi and H2 involves exactly hxh2 distinct operators 
whenever h± and h2 are relatively prime. When Ht and H2 

belong to the same set of conjugates under G then the 
number of these double co-sets which involve exactly hi 
distinct operators is evidently equal to the index of Hi 
under the largest subgroup of G which transforms Ht into 
itself, and all the other double co-sets involve a multiple 
of lii distinct operators. All of these multiples must be 
sub-multiples of hi. When H± and H2 are identical it is 
obvious that they may be regarded as conjugate, and hence 
the theorem which has just been stated applies directly 
to the double co-sets with respect to a single sub-group. 

Suppose now that hx = pa, where p is a prime number, 
and assume that the index of Hi under the largest sub­
group of G which transforms Ht into itself is k, k being 
prime to p. If the operators of G are represented as 
double co-sets with respect to Hu i. e., if H2 is assumed 
to be identical with Hl9 it results that the order g of G 
can be represented as follows: g = kpaJrlpaJrl. Hencepa 

must be the highest power of p which divides g. If c repre­
sents the number of conjugates of H under G it results 
that kpa = g/c, and hence (c—l)g = lpaJrl. That is, 
c = 1 mod p. It has therefore been proved by means 
of double co-sets that if Ht is of index prime to p under 
the largest subgroup of G which transforms H± into itself 
then Hi is a Sylow subgroup of G and the number of its 
conjugates under G is congruent to 1 mod p. 

From the preceding paragraph it results that a necessary 
and sufficient condition that a subgroup H of order pa is 
a Sylow subgroup of G is that the index of H under the 
group K formed by all the operators of G which trans­
form H into itself is prime to p, for if this index were 
not prime to p the quotient group KlH would have an 
order which is divisible by p. Since the order of this 
quotient group is less than g it may be assumed that this 
group contains a subgroup whose order is a power of p 
and hence G contains a subgroup of order pa+1. This 
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suggests that a proof of Sylow's theorem as regards the 
symmetric group S of degree pm can be based upon a 
proof of the fact that S involves a subgroup P of order pa 

which is of index prime to p under the group formed by 
all the substitutions of S which transform P into itself. 
This fact can easily be proved by mathematical induction. 

When m = 1 the theorem is evident. If we assume 
that the theorem is true for the symmetric group of degree 
pm-i it is not difficult to prove it true for S. In fact, 
8 obviously contains a substitution s of order p and of 
degree pm. The pm~1 cycles of this substitution are evidently 
transformed according to the symmetric group of degree 
pm-i by the largest subgroup of 8 which transforms s into 
itself. The substitutions of S which transform the cycles 
of s according to a Sylow subgroup in the symmetric group 
of degree pm~1 generate a group of order pa which contains 
no invariant substitution besides those generated by s. 
Hence all the substitutions of 8 which transform this group 
of order pa into itself also transform s into itself, and 
therefore this group of order pa is of index prime to p 
under the group formed by all the substitutions of 8 which 
transform it into itself. This group must therefore be a 
Sylow subgroup of 8. From the fact that S contains a 
Sylow subgroup of order pa it is very easy to deduce that 
every group whose order is divisible by p contains at least 
one Sylow subgroup whose order is a power of p. 

The considerations which precede prove incidentally that 
the Sylow subgroups of order pa contained in 8 are of 
index {p — l)m under 8, since the index of these Sylow 
subgroups is obviously p—1 times the index of the corres­
ponding Sylow subgroups under the symmetric group of 
degree pm~1. Hence we not only know that this index 
is prime to p but we also know its exact value. The said 
considerations also prove that the number of the Sylow 
subgroups of order pa contained in S which have in common 
a given invariant subgroup of order p is equal to the number 
of the Sylow subgroups of order a power of p in the sym-
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metric group of degree ^m _ 1 . Moreover, the number of 
the Sylow groups of order pa contained in S is this number 
times the number of the possible subgroups of order p and 
of degree pm contained in 8. 

From the method of proof here employed it also results 
directly that if the largest possible subgroup common to 
two Sylow subgroups of order pa in any group G is of 
order p& then the number of these Sylow subgroups is 
= 1 mod pa~P. For instance, it is well known that no 
two subgroups of order 4 contained in the simple group 
of order 60 have any operator in common besides the 
identity. Hence the number of these subgroups must be 
= 1 mod 4. As a matter of fact it is 5. It should be 
added that the simplifications suggested above do not apply 
to the well and favorably known proof of Sylow's theorem 
due to Gr. Frobenius. They apply to the older proof based 
on some properties of the symmetric group, especially to 
the form in which this proof is developed in the work 
to which reference was made in the first paragraph. 

In closing we wish to refer to a variation in the proof 
of another fundamental theorem in the theory of groups 
of finite order since this variation may possibly simplify 
the proof for some readers. This variation relates to a 
proof that every subgroup of index 2 of any group G is 
invariant under G. To prove this theorem it may first 
be noted that if s represents any operator of such a sub­
group H while t represents any operator of G which is 
not contained in H then st cannot be in H as otherwise 
the equation xy = z would have more than one solution 
in G when two of its symbols are replaced by operators 
of G. For the same reason the product of two operators 
of Gy neither of which is in H, must be in H. As t^st is 
such a product, since neither st nor t~r is in H, t~xst is 
such a product and must be in H. That is, H must be 
an invariant subgroup of ff as a result of the fact that 
it is composed of half the operators of G. 
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