A THEOREM ON SIMPLE ALGEBRAS*

by J. H. M. WEDDERBURN
In a previous paper \dagger I showed that every simple algebra A can be expressed as the direct product of a division algebra D and a simple matric algebra $M=\left(e_{p q}\right)$; the object of this note is to show that this expression is unique, that is, if $A=D_{1} \times M_{1}=D_{2} \times M_{2}$, where D_{1} and D_{2} are division algebras and M_{1} and M_{2} are simple matric algebras, then D_{1} and M_{1} are simply isomorphic \ddagger with D_{2} and M_{2} respectively.

Let δ_{1} and δ_{2} be the orders of D_{1} and D_{2}, and let e_{1} and e_{2} be primitive idempotent elements of M_{1} and M_{2} respectively. If e_{1} and e_{2} are supplementary or equal, then§

$$
D_{1} \cong e_{1} A e_{1} \cong e_{2} A e_{2} \cong D_{2} ;
$$

M_{1} and M_{2} are then of the same order and are therefore simply isomorphic. We shall therefore suppose that $e_{1} \neq e_{2}$ and, say, $e_{1} e_{2} \neq 0$.
Assume in the first place that $x=e_{1} e_{2}$ is not nilpotent; there then exists a rational polynomial

$$
y=\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{r} x^{r}
$$

which is an idempotent element of the algebra X generated by x. Now $e_{1} x=x$; therefore, since every element of X has the form $x f(x), f(x)$ a polynomial in x, it follows that $e_{1} y=y$ and

$$
\left(y e_{1}\right)^{2}=y e_{1} y e_{1}=y^{2} e_{1}=y e_{1}=e_{1} y e_{1}
$$

so that $y e_{1} \leqq e_{1} A e_{1}$; also $y e_{1} \neq 0$ since $y e_{1} y=y^{2}=y \neq 0$; hence $y e_{1}$, being idempotent, equals e_{1}. In the same way

[^0]it follows that $e_{2} y=e_{2}$ and $y e_{2}=y$. Also, if we set $y_{10}=y-e_{1}, y_{02}=y-e_{2}$, then
$$
e_{1} y_{10}=y_{10}, y_{10} e_{1}=0, e_{2} y_{02}=0, y_{02} e_{2}=y_{02}
$$
and, since $e_{1} \neq e_{2}$, one of y_{10}, y_{02} is not zero, say y_{10}.
We shall now show that y is primitive in A. Since $e_{1} y=y$, every element of $y A y$ has the form*
$w=d_{11} e_{11}+d_{12} e_{12}+\cdots, \quad\left(d_{i j}<D_{1} ; e_{11}=e_{1}, e_{i j}<M_{1}\right)$.
If w is idempotent, this gives $d_{11}=a$, the modulus of A, so that, if w is primitive, $y-w$ lacks the term in e_{11} and, being therefore nilpotent, must equal 0 since $(y-w)^{2}=y-w$. Hence y is primitive and we may sett $A=D \times M$ where M is a simple matric algebra which contains y and D is a division algebra simply isomorphic with $y A y$.

Now, since $y e_{1}=e_{1}$,

$$
D e_{1}=D y e_{1}=y A y e_{1} \geqq y e_{1} A e_{1} y e_{1}=e_{1} A e_{1}=D_{1} e_{1}
$$

also

$$
D_{1} e_{1}=e_{1} A e_{1} \geq e_{1} y A y e_{1}=y A y e_{1}=D y e_{1}=D e_{1}
$$

hence $D e_{1}=D_{1} e_{1}$ and therefore $D \cong D_{1}$. Similarly $D \cong D_{2}$; hence $D_{1} \cong D_{2}$ and, as before, also $M_{1} \cong M_{2}$.

Suppose in the second place that $e_{1} e_{2}$ is nilpotent; then $\left(e_{1} e_{2} e_{1}\right)^{r}=\left(e_{1} e_{2}\right)^{r} e_{1}$ is also nilpotent and, as $e_{1} A e_{1}$ is a division algebra, it follows that $e_{1} e_{2} e_{1}=0$; hence $\left(e_{2} e_{1}\right)^{2}=0$ and so, by a repetition of the same argument, $e_{2} e_{1} e_{2}=0$. If now we set $y=e_{1}-e_{1} e_{2}-e_{2} e_{1}$, then

$$
\begin{gathered}
e_{1} y=e_{1}-e_{1} e_{2} \neq e_{1}, y e_{1}=e_{1}-e_{2} e_{1}, e_{1} y e_{1}=e_{1} \\
e_{2} y=0=y e_{2}, y e_{1} y=y, y^{2}=y
\end{gathered}
$$

As before we must show that y is primitive. If $y=y_{1}+y_{2}$ where y_{1} and y_{2} are supplementary idempotent elements, then

$$
0=e_{2} y=e_{2} y_{1}+e_{2} y_{2}
$$

so that
and similarly

$$
0=\left(e_{2} y_{1}+e_{2} y_{2}\right) y_{1}=e_{2} y_{1}
$$

$$
y_{1} e_{2}=e_{2} y_{2}=y_{2} e_{2}=0
$$

[^1]From $y_{1}+y_{2}=y=e_{1}-e_{1} e_{2}-e_{2} e_{1}$ we have therefore

$$
y_{1}=y y_{1}=e_{1} y_{1}-e_{2} e_{1} y_{1}
$$

so that $y_{1} e_{1} y_{1}=y_{1}$, and similarly

$$
y_{2} e_{1} y_{2}=y_{2}, y_{2} e_{1} y_{1}=y_{2} y_{1}=0=y_{1} e_{1} y_{2}
$$

Now, if $z_{1}=e_{1} y_{1} e_{1}, z_{2}=e_{1} y_{2} e_{1}$, then

$$
\begin{aligned}
e_{1} & =e_{1} y e_{1}=e_{1} y_{1} e_{1}+e_{1} y_{2} e_{1}=z_{1}+z_{2} \\
z_{1}^{2} & =e_{1} y_{1} e_{1} \cdot e_{1} y_{1} e_{1}=e_{1} \cdot y_{1} e_{1} y_{1} \cdot e_{1}=e_{1} y_{1} e_{1}=z_{1} \\
z_{1} z_{2} & =e_{1} y_{1} e_{1} \cdot e_{1} y_{2} e_{1}=e_{1} y_{1} e_{1} y_{2} e_{1}=0
\end{aligned}
$$

and similarly $z_{2}^{2}=z_{2}, z_{2} z_{1}=0$. Also $z_{1} \neq 0$ unless $y_{1}=0$ since

$$
y_{1} z_{1} y_{1}=y_{1} e_{1} y_{1} e_{1} y_{1}=y_{1} e_{1} y_{1}=y_{1}
$$

and similarly $z_{2} \neq 0$ unless $y_{2}=0$. But z_{1} and z_{2}, if not zero, are supplementary idempotent elements in $e_{1} A e_{1}$ whereas e_{1} is primitive; hence one of them is zero, that is, y is primitive.

We may now, as before, set $A=D \times M$ where $D \cong y A y$ is a division algebra and M is a simple matric algebra containing y. Remembering that $e_{1} y e_{1}=e_{1}$, we then have

$$
e_{1} D y e_{1}=e_{1} y A y e_{1} \geqq e_{1} y e_{1} A e_{1} y e_{1}=e_{1} A e_{1}=D_{1} e_{1}
$$

also

$$
D_{1} e_{1}=e_{1} A e_{1} \geqq e_{1} y A y e_{1}=e_{1} D y e_{1}
$$

hence $D_{1} e_{1}=e_{1} D y e_{1}$. If d and d^{\prime} are any elements of D, we therefore have

$$
e_{1} d y e_{1}=d_{1} e_{1}, e_{1} d^{\prime} y e_{1}=d_{1}^{\prime} e_{1}, \quad\left(d_{1}, d_{1}^{\prime}<D_{1}\right)
$$

and hence

$$
e_{1}\left(d+d^{\prime}\right) y e_{1}=\left(d_{1}+d_{1}^{\prime}\right) e_{1}
$$

$d_{1} d_{1}^{\prime} e_{1}=e_{1} d y e_{1} d^{\prime} y e_{1}=e_{1} d y e_{1} y d^{\prime} e_{1}=e_{1} d y d^{\prime} e_{1}=e_{1} d d^{\prime} y e_{1}$, and, since $e_{1}=e_{1} y e_{1}$, it follows that $D \cong D_{1}$ and therefore $M \cong M_{1}$. Finally, since $e_{2} y=0=y e_{2}, e_{2}$ and y are supplementary and hence $D_{2} \cong e_{2} A e_{2} \cong y A y \cong D \cong D_{1}$, from which, as before, $M_{1} \cong M_{2}$. The proof of the theorem is therefore complete.

[^0]: * Presented to the Society, May 3, 1924.
 \dagger Proceedings of the London Society, (2), vol. 6 (1907), p. 99.
 \ddagger Simple isomorphism will be denoted by \cong.
 § See L. E. Dickson, Algebras and Their Arithmetics, Chicago, 1923, pp. 74, 77.

[^1]: * See Dickson, loc. cit.
 \dagger See Dickson, loc. cit.

