A THEOREM ON SIMPLE ALGEBRAS* by J. H. M. WEDDERBURN

In a previous paper \dagger I showed that every simple algebra A can be expressed as the direct product of a division algebra D and a simple matric algebra $M = (e_{pq})$; the object of this note is to show that this expression is unique, that is, if $A = D_1 \times M_1 = D_2 \times M_2$, where D_1 and D_2 are division algebras and M_1 and M_2 are simple matric algebras, then D_1 and M_1 are simply isomorphic[‡] with D_2 and M_2 respectively.

Let δ_1 and δ_2 be the orders of D_1 and D_2 , and let e_1 and e_2 be primitive idempotent elements of M_1 and M_2 respectively. If e_1 and e_2 are supplementary or equal, then

$$D_1 \cong e_1 A e_1 \cong e_2 A e_2 \cong D_2;$$

 M_1 and M_2 are then of the same order and are therefore simply isomorphic. We shall therefore suppose that $e_1 \neq e_2$ and, say, $e_1e_2 \neq 0$.

Assume in the first place that $x = e_1 e_2$ is not nilpotent; there then exists a rational polynomial

$$y = \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_r x^r,$$

which is an idempotent element of the algebra X generated by x. Now $e_1x = x$; therefore, since every element of X has the form xf(x), f(x) a polynomial in x, it follows that $e_1y = y$ and

$$(ye_1)^2 = ye_1ye_1 = y^2e_1 = ye_1 = e_1ye_1,$$

so that $ye_1 \leq e_1Ae_1$; also $ye_1 \neq 0$ since $ye_1y = y^2 = y \neq 0$; hence ye_1 , being idempotent, equals e_1 . In the same way

^{*} Presented to the Society, May 3, 1924.

[†] PROCEEDINGS OF THE LONDON SOCIETY, (2), vol. 6 (1907), p. 99.

 $[\]ddagger$ Simple isomorphism will be denoted by \cong .

[§] See L. E. Dickson, Algebras and Their Arithmetics, Chicago, 1923, pp. 74, 77.

it follows that $e_2y = e_2$ and $ye_2 = y$. Also, if we set $y_{10} = y - e_1$, $y_{02} = y - e_2$, then

$$e_1y_{10} = y_{10}, \ y_{10}e_1 = 0, \ e_2y_{02} = 0, \ y_{02}e_2 = y_{02},$$

and, since $e_1 \neq e_2$, one of y_{10} , y_{02} is not zero, say y_{10} .

We shall now show that y is primitive in A. Since $e_1y = y$, every element of yAy has the form*

 $w = d_{11}e_{11} + d_{12}e_{12} + \cdots$, $(d_{ij} < D_1; e_{11} = e_1, e_{ij} < M_1)$. If w is idempotent, this gives $d_{11} = a$, the modulus of A, so that, if w is primitive, y - w lacks the term in e_{11} and, being therefore nilpotent, must equal 0 since $(y - w)^2 = y - w$. Hence y is primitive and we may set $A = D \times M$ where M is a simple matric algebra which contains y and D is a division algebra simply isomorphic with yAy.

Now, since $ye_1 = e_1$,

$$De_1 = Dye_1 = yAye_1 \ge ye_1Ae_1ye_1 = e_1Ae_1 = D_1e_1$$

also $D_1e_1 = e_1Ae_1 \ge e_1yAye_1 = yAye_1 = Dye_1 = De_1;$

hence $De_1 = D_1e_1$ and therefore $D \cong D_1$. Similarly $D \cong D_2$; hence $D_1 \cong D_2$ and, as before, also $M_1 \cong M_2$.

Suppose in the second place that e_1e_2 is nilpotent; then $(e_1e_2e_1)^r = (e_1e_2)^r e_1$ is also nilpotent and, as e_1Ae_1 is a division algebra, it follows that $e_1e_2e_1 = 0$; hence $(e_2e_1)^2 = 0$ and so, by a repetition of the same argument, $e_2e_1e_2 = 0$. If now we set $y = e_1 - e_1e_2 - e_2e_1$, then

$$e_1y = e_1 - e_1e_2 \neq e_1, \ ye_1 = e_1 - e_2e_1, \ e_1ye_1 = e_1, \ e_2y = 0 = ye_2, \ ye_1y = y, \ y^2 = y.$$

As before we must show that y is primitive. If $y = y_1 + y_2$ where y_1 and y_2 are supplementary idempotent elements, then

so that

$$0 = e_2 y = e_2 y_1 + e_2 y_2,$$

and similarly

$$y_1e_2 = e_2y_2 = y_2e_2 = 0.$$

 $0 = (e_2 y_1 + e_2 y_2) y_1 = e_2 y_1,$

* See Dickson, loc. cit.

† See Dickson, loc. cit.

12

1925.]

From $y_1 + y_2 = y = e_1 - e_1 e_2 - e_2 e_1$ we have therefore

 $y_1 = yy_1 = e_1y_1 - e_2e_1y_1,$

so that $y_1e_1y_1 = y_1$, and similarly

 $y_2e_1y_2 = y_2, \ y_2e_1y_1 = y_2y_1 = 0 = y_1e_1y_2.$

Now, if $z_1 = e_1 y_1 e_1$, $z_2 = e_1 y_2 e_1$, then

$$e_1 = e_1 y e_1 = e_1 y_1 e_1 + e_1 y_2 e_1 = z_1 + z_2, \ z_1^2 = e_1 y_1 e_1 \cdot e_1 y_1 e_1 = e_1 \cdot y_1 e_1 y_1 \cdot e_1 = e_1 y_1 e_1 = z_1, \ z_1 z_2 = e_1 y_1 e_1 \cdot e_1 y_2 e_1 = e_1 y_1 e_1 y_2 e_1 = 0,$$

and similarly $z_2^2 = z_2$, $z_2 z_1 = 0$. Also $z_1 \neq 0$ unless $y_1 = 0$ since

$$y_1z_1y_1 = y_1e_1y_1e_1y_1 = y_1e_1y_1 = y_1,$$

and similarly $z_2 \neq 0$ unless $y_2 = 0$. But z_1 and z_2 , if not zero, are supplementary idempotent elements in e_1Ae_1 whereas e_1 is primitive; hence one of them is zero, that is, y is primitive.

We may now, as before, set $A = D \times M$ where $D \cong yAy$ is a division algebra and M is a simple matric algebra containing y. Remembering that $e_1ye_1 = e_1$, we then have

 $e_1 Dy e_1 = e_1 y Ay e_1 \ge e_1 y e_1 A e_1 y e_1 = e_1 A e_1 = D_1 e_1,$ also

$$D_1e_1 = e_1Ae_1 \geq e_1yAye_1 = e_1Dye_1;$$

hence $D_1e_1 = e_1Dye_1$. If d and d' are any elements of D, we therefore have

$$e_1 dy e_1 = d_1 e_1, \ e_1 d' y e_1 = d'_1 e_1, \qquad (d_1, \ d'_1 < D_1)$$

and hence

 $e_1(d+d')ye_1 = (d_1+d_1')e_1,$ $d_1d_1'e_1 = e_1dye_1d'ye_1 = e_1dye_1yd'e_1 = e_1dyd'e_1 = e_1dd'ye_1,$ and, since $e_1 = e_1ye_1$, it follows that $D \cong D_1$ and therefore $M \cong M_1$. Finally, since $e_2y = 0 = ye_2, e_2$ and y are supplementary and hence $D_2 \cong e_2Ae_2 \cong yAy \cong D \cong D_1$, from which, as before, $M_1 \cong M_2$. The proof of the theorem is therefore complete.

PRINCETON UNIVERSITY