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FIVE AXIOMS FOR POINT AND TRANSLATION 
IN AFFINE GEOMETRY 

BY A. A. BENNETT 

1. Introduction. Postulate systems for geometry are so 
numerous that the development of a new system is of itself 
of little interest. Before explaining the present system, 
some remarks about various lines of approach to geometry 
may be of value in estimating its significance. 

(1) The introduction of a new form of geometry upon 
the basis of an assumed familiarity with other geometrical 
studies is a well known practice. This is what is done in 
the usual treatment of analytical geometry, of descriptive 
geometry, and frequently of projective geometry. There 
is even a tendency these days to teach euclidean geometry 
along semi-intuitional lines. This procedure appeals to 
elementary students as being "concrete", but it makes any 
appreciation of the logical structure of the subject difficult. 

(2) A "synthetic" axiomatic treatment of geometric figures 
is the classical and still the orthodox line of approach. 
This is the method of Euclid, of the familiar non-euclidean 
studies, of Hilbert's Foundations, and of Veblen and Young's 
Projective Geometry, not to mention others. This is how­
ever subject to the disadvantage that the employment of 
powerful and economical analytical methods is necessarily 
delayed. It has also in the past been the innocent cover 
for much inaccurate reasoning. While a wide acquaintance 
with actual synthetic theorems is essential to the neat 
handling of complicated relations, it is difficult to justify 
an avoidance of analytical tools when these would simplify 
the discussion. The utility of quasi-analytical notions is 
admitted even by the extreme euclidean purists, not only 
in the simpler relations but when these appear under such 
titles as "method of similar figures", "method of trans­
lation", "methods of rotation and reflexion", "method of 
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inversion". Of course algebraic methods can be proved 
justifiable on this basis, addition and multiplication being 
matters of definition, as Euclid did to some extent with 
his theory of proportion, and has been done completely 
by modern mathematicians. But there is at least a long, 
and to many students, painful delay, in the introduction 
of these algebraic operations. 

(3) An axiomatic treatment based upon point and trans­
formation may be followed, where the transformations are 
of the most general type leaving the propositions invariant. 
This is in keeping with Klein's famous Programm, is sug­
gested by the non-axiomatic treatment of Lie, and has 
been carried out by Pieri, Hilbert, E. L. Moore, Gaba, 
and others. Here analytic machinery early suggests itself, 
but is not at once available. The transformation in its 
full generality impresses most students as neither an ele­
mentary nor an obvious notion, and so in a sense psycho­
logically undesirable for a basic undefinable. The more 
familiar special transformations, such as translations, are 
found to be difficult of definition. Even in the case of 
such an elementary figure as a straight line, an extensive 
and intricate study is required before a definition is available. 

(4) The number field may be first constructed, and geo­
metry identified with the study of a hypercomplex algebra, 
addition and multiplication in the number field being deve­
loped in parallel. This is the characteristically analytical 
method, and that usual in vector analysis. Objections to 
the customary treatment are many. For instance there 
may be much duplication incident to a repetition for the 
hypercomplex numbers of the rules laid down for the ori­
ginal number field. Despite a possible formal independence, 
multiplication cannot be regarded as largely arbitrary. 
A thorough study of addition among points conditions in 
advance many of the properties that must be assumed for 
any useful system of multiplication, so that the extent to 
which multiplication may be defined in any given case is 
a matter of interest. Another frequent criticism of the 
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hypercomplex treatment is due to its usual dependence 
upon coordinate systems, and the absence of any early 
test of purely geometrical, that is, of invariantive properties. 

2. Proposed Conditions, It would seem not without 
interest to approach geometry on an axiomatic basis with 
the following conditions in mind. 

(1) Analysis shall be available early. 

(2) Save that congruence conditions are postponed, the 
system shall be essentially euclidean from the start. 

(3) The analysis shall be of the simplest and most ob­
vious sort, even at the possible sacrifice of symmetry. 

(4) The one-dimensional case shall not be featured with 
special emphasis at the start. 

(5) No special frame of reference shall be made fundamental. 

A word as to these conditions. As to (1), no discussion 
should be required provided that it is not inconsistent with 
the retention of other ideals. As to (2), by postponing 
congruence conditions, all theorems become available not 
merely for the euclidean case but also for affine geometry, 
for which, as for projective geometry, there is no universal 
invariant for a point pair. Condition (3) gracefully excludes 
projective geometry with its extraneous factor of propor­
tionality. Conditions (4) and (5) suggest that addition and 
multiplication be considered throughout as applied to hyper-
complex numbers, and that further only their geometrically 
invariant features be discussed. 

Beside the undefined element, point, it is natural from 
this line of attack to take as undefined the operation 
translation. Thus vector addition and subtraction may be 
expected to appear early in the discussion. The general 
notion of an affine transformation is eventually required. 
The question arises as to how far this may be secured by 
mere definition. From this stage on, the situation agrees 
in its essentials with that arising in general projective 
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geometry. Within a single net of rationality no new un­
defined notion is required. For the general concept of 
straight line in its relation to affine transformations, a 
"fundamental" postulate is needed, and for the euclidean 
theory, not only must congruence be specialized, but order 
relations also must be established. One might refer for 
such questions to Veblen and Young's Projective Geometry. 

3. The Five Axioms. The present brief study is confined 
for brevity and simplicity to the particularly elementary 
case of a finite geometry based on a Galois field where 
the prime modulus appears only to the first power, so that 
the field is modular in the primitive sense. It will be noted 
that three distinct "spaces" are considered, that of "points", 
that of "translations", and that of "automorphisms". The 
set of axioms is not categorical. Modifications are necessary 
in extension to cases which will admit the euclidean real 
or complex geometry as special instances, along the lines 
indicated above. Since the purpose of this set is to point 
out the extensive deductions inferrable from so few and 
apparently such mild conditions, and is not the study of 
this special and trivial type of space, questions of in­
dependence and completeness will not be discussed. The 
axioms together with some familiar and perhaps unnecessary 
definitions follow. "Point" and "translation" only are 
undefined. 

Ax. I. P is a finite set of elements. 
The elements of P may be called points and designated 

by the use of the letter p, with or without subscripts or 
other diacritical marks. By a permutation of P is meant 
an operation based upon a biuniform correspondence among 
the elements of P, by which each element of P is replaced 
by its uniquely corresponding element of P. 

Ax. I I 1 . A is a set of permutations of P. 
The elements of A may be called translations and de­

signated by the use of the letter a, with or without sub­
scripts or other diacritical marks. With respect to a given 
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permutation, an element of P is said to be fixed, if the 
permutation replaces this element by itself. The identical 
permutation is that which leaves each element fixed. We 
have not required that A be a group or even a semi-group, 
but there will be a group of permutations of P generated 
by the elements of A and their inverses, or as we may 
say, by the set A. 

Ax. II 2. The identical permutation is the only permu­
tation in the group generated by the set A which leaves 
as much as a single element of P fixed. 

Ax. II 3. For the given set, P, Wis not possible to extend 
the set A, by adjoining further permutations, so that the 
extended set shall also satisfy I I 1 , and II 2. 

From these axioms it follows readily that A is itself 
a group* With a little discussion of the consequences 
of A being possibly intransitive in P, it is seen that if A 
were intransitive, a new permutation, b, could be adjoined, 
commutative with each a, and interchanging subsets of P 
within each of which A is transitive. Furthermore the 
set A together with b would satisfy I I 1 and II2, by 
making explicit use of the commutative character of b, 
so that 113 would fail to hold if A were not transitive. 
Zermelo's axiom in the finite case is assumed as a principle 
of logic. 

For an unknown set P, the axioms II place no restrict­
ions upon A other than that A shall be a group. For a 
given group A, the set P is found to be in biuniform 
correspondence with A and in as many ways as one chooses 
an element of P to correspond to the identical permutation. 
No points of P are specialized, while in A there is at least 
one element not to be confused with any other, namely, 
the identical permutation. Two permutations, which are 
elements of A, are said to be equivalent, if and only if 
there is an automorphism of A (hence preserving the mul­
tiplication table of A), which replaces the first by the 
second, and also an automorphism of A replacing the second 
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by the first. Since an automorphism may replace distinct 
elements by a single one, this double condition is needed. 

Ax. III. Any two elements of A, neither of which is 
the identical element, are equivalent. 

We may now conclude that with the exception of the 
identical element, all elements of A are of the same order. 
Since any cyclic group of composite order has proper cyclic 
subgroups, we conclude that the common order of all non-
identical elements is a prime, say p. The total order of 
the group can contain no prime factor other than this p, 
so that since the set is of finite order, this total order 
may be designated by pn. We may call this n the di­
mensionality of P and of A. Any set of p points, each 
of which is obtainable from each other by the operations 
of a cyclic subgroup of A, may be called a line. Thus 
each line has p distinct points. 

It is a well known theorem* in the study of finite groups 
that every prime power group contains elements other 
than the identity commutative with every other element 
of the group. Applying this to A, and using the fact 
that the elements, a, other than the identity are equi­
valent, we infer that A is commutative. We may now 
identify the operation of obtaining the result of two 
successive permutations, with the operation of adding 
these elements, a. 

The totality of automorphisms of A is called the set M. 
Thus if m is an element of M, and ax and a2 are two 
elements of A, it follows that m{a1

Jra2) = m{a1)
Jrm{a2). 

Given two automorphisms, Wi and m2, and denoting by a 
an unrestricted variable in A, we may define a' and a" 
by the conditions rn^ia) = a% m2(a) = a". Now there 
is an automorphism replacing a by the sum a' + a", since 
there is obviously such a uniform correspondence and it 
satisfies the distributive condition essential for an auto-

* Cf. Hilton, Finite Groups, p. 142. 
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morphism, since in fact (a[ + aJi) + (aï + a-I) = (a[ + aï) 
+ 0*2+ $2')- Since M contains each automorphism of A, 
it contains this also. We shall naturally designate it by 
mx + m2. Thus M is completely distributive with respect 
to the addition of elements of A, 

The result of the successive application of two elements 
of M is again in M9 and M is found to constitute a semi­
group, which furthermore contains an identical element for 
the semigroup. The terms multiplication and product may 
be used in a strict sense for this M. While M is a semi­
group with respect to multiplication, it may be shown to 
form with respect to addition, as already used, a group. 
Its identical element with respect to addition is the null-
automorphism, that which replaces each element of A by 0, 
the identical element of A. The element of M identical 
with respect to multiplication is of course that which re­
places each a by itself. Thus M taken with its rules of 
operation constitutes a linear algebra. This M includes 
singular automorphisms, that is automorphisms replacing 
distinct elements of A by a common element. It is there­
fore no group. Whether approached from the side of the 
modular theory of numbers, or from the side of special­
izations in the theory of general projective geometry, it 
is found that M is simply isomorphic with the semigroup 
of all affine projectivities among translations in a modular 
space, modulo p, of n dimensions, leaving the null trans­
lation invariant, and with the semigroup of all linear homo­
geneous substitutions in n variables, taken modulo p, no 
factor of proportionality being suppressed. 

In the one-dimensional case, multiplication is commutative 
in M and the number of elements in M is the same as in 
P and A. For cases of higher dimensionality, there are 
pni elements in M and multiplication is not commutative, 
although within any cycle multiplication is of course always 
commutative. 
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