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EVANS' COLLOQUIUM LECTURES 
The Cambridge Colloquium Lectures, 1916. Part I: Functionate and 

their Applications. Selected Topics, including Integral Equations. By 
G. C. Evans. New York, American Mathematical Society, 1918. 136 pp. 
The theory of functional has been in the foreground so much in 

the last two decades, particularly in the domain of integral equations, 
that a colloquium on this subject was very timely. The theory of 
integral equations, however, bears the same relation to the whole 
theory of functionals as the theory of algebraic equations does to the 
entire domain of the theory of functions. In fact, so rapid has been 
the development of the theory of functionals that Paul Levy has re­
cently devoted a book of nearly four hundred fifty pages to the study 
of functional analysis alone, leaving aside entirely the theory of complex 
functionals and touching but slightly the theory of integral and integro-
differential equations and a number of other subjects that would ordinarily 
be included as topics in the theory of functionals. It can be seen from 
this what a difficult, and what seems to the reviewer an almost im­
possible, task it would be to essay a clear presentation of almost every 
domain of this difficult subject in the space of less than one hundred 
fifty pages. This was the task that Professor Evans set himself. 

The author has divided his work into five lectures. The first lecture 
takes up general considerations of a functional, such as definitions of 
continuity, Volterra derivatives, and additive and non-additive functionals 
of plane curves. A rather interesting connection is noted between 
additive functionals and functions of point sets, viz., "an additive 
continuous functional of finite variation has a finite derivative (in the 
restricted sense) at all points except possibly those of a set of measure 
zero". Another interesting result is the extension of the law of the 
mean of the differential calculus. Functionals of space curves are then 
introduced, and the concept of the flux of a functional, due to Levy, 
is defined, and is used extensively in the next lecture. 

In studying the dependence of the Green's function on the boundary 
of the closed curve, Hadamard was led to an equation involving func­
tional derivatives. These equations are the analogs of total and partial 
differential equations in n variables. Just as, in the latter, certain 
conditions of integrability are required, so here also analogous conditions 
must be satisfied. These are developed very elegantly by means of 
another concept due to Levy, that of the adjoint linear functional. 
Various interesting applications are made of the integrability conditions, 
and, in particular, it is shown that Hadamard's equation is completely 
integratie. 
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The author now turns his attention to complex functional, to which 
he devotes Lecture II. As far back as 1889 a considerable portion of 
this theory was developed by Volterra, who takes as a starting point 
the relation of isogeneity, which is the extension to functionals of curves 
in space of the relation that holds between two complex point functions 
on a surface. This condition of isogeneity is expressed in terms of 
the normal component to the curve of the vector flux of a functional 
defined in Lecture I. Although the author summarizes the properties 
of the linear vector function used in this lecture, it would be highly 
desirable for one to have some acquaintance with vector analysis before 
attempting to read it. In case the functionals involved are additive, 
the condition of isogeneity may be considerably simplified, since in this 
case the vector flux can be chosen as a vector point function inde­
pendent of the curve. Important properties of the relation of isogeneity 
for additive functionals are given, and the analogs of Green's and 
Cauchy's theorems are proved. All this has been extended by Volterra 
to additive complex functionals whose arguments are r-dimensional 
hyperspaces immersed in w-space. For r~n — 2, this is a direct 
generalization of the theory of complex functionals of curves in 3-space. 

Although Lecture III has the caption "Implicit Functional Equations", 
this part of the work is essentially concerned With the study of the 
linear functional. This study must necessarily precede any existence 
theorem on implicit functional equations, since the differential, which 
has a natural origin here, is a linear functional. T [#] is said to be a 
linear functional of # if (1) it is a distributive functional of #, and (2) 
if it is a continuous functional of tf>, where $ is allowed to range over 
the whole class of continuous functions. Various representations of 
such a linear functional have been given by Hadamard, F. Eiesz, and 
Lebesgue, using as their means of representation the Eiemann, the 
Stieltjes, and the Lebesgue integrals, respectively. Since, in the de­
finition of a linear functional, one may change either the class of 
functions #, or the type of continuity, one may obtain two distinct 
extensions of the linear functionals. The first has been made by Fréchet, 
Lebesgue, Radon, and others. The second extension is to introduce 
higher orders of continuity. The importance of this concept seems to 
have been recognized first by Bliss,* who notes that if the calculus 
of variations is to be regarded as a chapter in the theory of maxima 
and minima of functionals, the definition of continuity of a functional 
must be extended in this way. 

Fréchet's definition of a differential of a functional is now given, 
and a theorem on implicit functional equations due to Volterra is proved 

* A note on functions of lines, PKOCEEDINGS OF THE NATIONAL 
ACADEMY, vol. 1 (1915), p. 173. 
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in which the differential is used. It must be pointed out, however, 
that Volterra uses a very special kind of differential. In fact, Volterra 
proved his result some time before Fréchet gave his formal definition. 

Lecture IV opens with the remark that the most desirable approach 
to the treatment of Laplace's equation is to study, as Bôcher did, the 
equation 

c 

This relation is supposed to hold for all circles within a given two-
dimensional region, and the existence and continuity of u, uXj % are 
assumed, instead of the existence of Wax», Uyy^ which have no physical 
significance. This lecture is practically devoted to the study of an 
equation which is a generalization of the one given above. Professor 
Evans calls such equations integro-differential equations of the Bôcher 
type. By defining the adjoint of such equations, the author is able to 
prove an extension of Green's theorem for them. He now subjects the 
equation to an arbitrary real point transformation, and finds that the 
equation is transformed into a similar one; and, furthermore, that a 
certain differential quadratic form T {dx, dy) is a covariant of the 
transformation. The directions defined by T (dx, dy) = 0 are called 
characteristic directions, and the solutions of the equation are called 
characteristic curves. The characteristic directions may be real and 
distinct, real and coincident, or imaginary. The integro-differential 
equation is said to be hyperbolic, parabolic, or elliptic, respectively, 
just as in the theory of linear partial differential equations. Normal 
forms of these types are then obtained, and a rather detailed study of 
the parabolic type is made. The lecture closes with some remarks on 
the usual types of integro-differential equations, as originally given by 
Volterra. 

Lecture V, the last of the series, gives an account of the various 
generalizations of the theory of integral equations. The lecture begins 
with a statement of some of the more important properties of Stieltjes' 
integrals, and an application of these to the study of a class of equations 
involving Stieltjes' integrals. An existence theorem of such equations 
is given, but with the hypotheses as stated, an extension of the Fred-
holm theory is not possible.* 

In generalizing the theory of the linear integral equation, one may 

* It might be stated here that such a generalization has recently 
been given by F. Kiesz in a very important paper in the ACTA MATHE­
MATICA (vol. 41 (1916), p. 71), which unfortunately appeared just too 
late to be included in these lectures. He uses there the concept of 
completely continuous linear functionals ; it was this notion that made 
the extension possible. 
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proceed along at least two distinct lines. In the first place, one may, 
with E. H. Moore, generalize the variables, the classes of functions, 
and the linear operations, in such a way that the methods of Fredholm 
apply for the extended concepts. Or one may proceed, as Volterra 
has done in his Theory of Permutable Functions, to build a calculus 
of composition, i. e., of the operations which produce the iterated kernels. 
He is able by this means to solve an extensive class of non-linear 
integral and integro-differential equations. These extensions Professor 
Evans takes up in the order mentioned, and it should be remarked that 
an exceptionally clear exposition of Moore's theory is given, and a 
number of important contacts with the classical theory are pointed out. 
He notes, for example, that when the general range P is the one-
dimensional continuum, and the class M is the totality of continuous 
functions over this range, Moore's linear operation J reduces to the 
classical Stieltjes' integral. 

In the presentation of Volterra's theory, Professor Evans makes a 
considerable advance over the treatment found in Volterra's Leçons 
sur les Fonctions de Lignes. In the first place, he combines the theories 
of permutable functions of the first and second kinds into a single 
theory. In the second place, he introduces notations and concepts that 
simplify materially the proofs given by Volterra. This theory of per­
mutable functions leads immediately to a very interesting extension 
of every analytic function. This extension carries with it corresponding 
extension of addition theorems, moduli of periodicity, etc. One such 
generalized function, called the Volterra transcendental, plays an im­
portant role in a certain class of integro-differential equations.* 

It can be seen from this outline what a multitude of topics has been 
discussed in these lectures. After reading this book, one feels that 
the author is profoundly at home with every phase of the theory of 
functionals, to which he himself has made many important contributions. 
Although a serious effort has been made to give a clear presentation 
of these subjects, one cannot help feeling that it might have been wiser 
to have included fewer topics and to have developed each of them in 
a more leisurely fashion. 

Of the misprints, one may mention those which have been noted 
already by Professor Evans in this BULLETIN (vol. 25, p. 461) and the 
following. In the theorem at the top of page 7, change F' \<p(x) | £] 
to F' [<p0 (x) | £]. The left member of formula (24') on page 16 should 
read g' [c | ABM] instead of g [c \ ABM], On page 69, the right member 
of formula (33) should read F[<p + à<p\ —F[<p\. 

* See Schlesinger, Zur Theorie der linearen Integro-Differential-
gleichungen, JAHRESBERTCHT DER VEREINIGUNG, vol. 24 (1915), 
pp. 84-125. 
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The author remarks in his preface that the material has been so 
arranged that "the text in large type . . . may be read by itself". Yet 
we find on page 34 (large type) references to equations (7) and (8), 
which are in small type. All these, however, are unimportant oversights, 
and the reviewer turns from this work with the feeling that there is 
in it a wealth of valuable information on practically every phase of the 
theory of functionals, with many suggestions for its future development, 
The bibliographical list that heads each chapter is a feature of not 
inconsiderable value. 

I. A. BAENETT 

JUNG ON ALGEBRAIC FUNCTIONS 
Einfuhrung in die Theorie der algebraischen Funldionen einer Ver­

dnderlichen, by Heinrich W. E. Jung. Berlin, Walter de Gruyter, 
1923. 246 pp. 

The three great paths in the study of the algebraic functions of a 
complex variable—the geometric, the analytic, and the arithmetic—have 
as a common starting point a single algebraic equation, f(x,y) = 0. 
The traveler on one of the roads, once away from the point of de­
parture, is often far out of hailing distance from those on the other 
paths; yet he is at times agreeably surprised to find he has reached 
the same point as they. At such times there will be a sign-post 
telling him and his fellow-climbers that they have reached the Riemann-
Roch Theorem, it may be, or the Lückensatz of Weierstrass. What­
ever the point to which the various paths converge, it is almost certain 
to be concerned with genus, or deficiency, if another language is used. 

Multiplicity of dialects is, indeed, characteristic of the study in 
question. Not only has each path its own vocabulary, but the arith­
metic path, with which we are chiefly concerned here, has no single 
valid language.* In Jung's book, for instance, we miss the mention 
of Ring, Fuhrer, Ideal, Modal, Integrabilitdtsbereich, Polygon, although 
most of the concepts named find a place. On the other hand, certain 
terms are borrowed from algebraic geometry, in particular, canonical 
class (corresponding to the canonical series) and adjoint functions 
(corresponding to adjoint curves). 

* For a comparison of the content, and to some extent of the language, 
of the various theories, see Emmy Noether, Die arithmetische Theorie 
der algebraischen Funldionen einer Verdnderlichen, in ihrer Beziehung 
zu den ubrigen Theorien und zu der Zahlkörpertheorie, JAHRESBERICHT 
DER D. MATH.-VEREINIGUNG, vol. 28 (1919). 


