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A QUALITATIVE DEFINITION OF THE 
TRIGONOMETRIC AND HYPER­

BOLIC FUNCTIONS* 

BY P . FRANKLIN 

1. Introduction. The object of the present note, which was 
suggested by a remark of Professor Birkhoff as to possible 
definitions of the trigonometric functions, is to define the 
trigonometric and hyperbolic functions by properties which 
shall be simple in the sense of not involving any of the ideas 
of the calculus, and qualitative in the sense of not involving 
relations as definitely explicit as functional or differential 
equations.! 

2. Postulates. The characteristic properties (or postulates) 
which we use in our definition are stated in terms of a linear 
family of functions depending on two parameters, and they so 
restrict the family that each of its members is of the form 
rF(mx + t) or the sum of two such expressions, where F(x) 
is the function we wish to define. In proving this we shall 
incidentally give explicit rules for constructing the function 
F(x) in terms of the family. We assume as the characteristic 
properties: 

I. The two-fold linear family of functions AO(x) + BH(x) 
(where G(x) and H(x) are any two independent members of 
the family) is independent of the choice of origin and direction 
of the #-axis; i.e., it is identical, as a family, with that given by 
AO(x +c) + BH(x + c) or AG(- x) + BH(~ x). 

II. Some pair of independent members of the family, as 
G(x) and H(x), are functions continuous for at least one value 
of x. 

To these we shall add one of the following: 
III (a). No member of the family never vanishes. 

* Presented to the Society, December 27, 1922. 
t For definitions of the trigonometric functions involving such relations, 

see Osgood, Lehrbuch der Funktionentheorie, 1920, vol. 1, pp. 571-591. 
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I I I (&). There exists a member of the family which never 
vanishes, and all members of the family which never vanish 
are linearly dependent on this one, i.e., constant multiples of it. 

I l l (c). There exist two linearly independent members of 
the family which never vanish. 

We shall show that for I, I I and I I I (a) the family is 
A sin mx + B cos mx, and hence each member is of the form 
r sin (mx + t). For I, I I and I I I (b) the family is A + Bx, 
and hence each member of the family is of the form mx + t. 
Finally, for I, I I and I I I (c) the family is A sinh mx 
+ B cosh mx, and hence each member is of the form 
r sinh (mx + f) ; r cosh (mx + t) or r sinh (mx + t) 
=1= r cosh (mx + t). Thus, after showing how to pick out the 
particular pair of functions desired from the family, we may 
define the trigonometric or hyperbolic functions by adjoining 
I I I (a) or I I I (c) respectively to I and II . I t is interesting to 
note that as I I I (a), (b) and (c) are mutually exclusive, the 
conditions I and I I alone define either the trigonometric 
functions, the hyperbolic functions, or the linear function, 
the last of which may be considered as a limiting case of 
either type. This result is natural, in view of the fact that I 
and the assumption that our functions admit two derivatives 
would practically restrict them to be solutions of a linear homo­
geneous differential equation of the second order with constant 
coefficients. I t is interesting, however, to see that the much 
weaker restriction I I is sufficient to give the result stated. 

3. Consequences of I and I I . Before proceeding to the 
separate cases mentioned above, we shall derive from I and I I 
the fact that each member of the family is continuous at all 
points. To see this, let G(x) and H(x) be the functions 
mentioned in II , and let them be continuous at xi. Then 

G(x + X2- X!) = AxG(x) + B1H(x), 

since it is a member of the family by I, where x<i is any number 
and A\ and B\ are constants depending on x2 — x%. But since 
the right member of this equation is continuous at x = x\, 
the left member is continuous there, and G(x) is continuous 
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at #2, any point. Similarly H(x), and therefore every member 
of the family, is continuous everywhere. 

4. Consequences of I, II, III (a). We now assume I, II and 
III (a). Let F(x) be some member of the family (not identically 
zero) and let F(b) be different from zero. We set 

F(b + x) + F(b -x)_ r 

(1) ^ °W-

It follows from this that C(x) = C(— x); and that (7(0) = 1. 
C(x) vanishes by III (a), and as it is continuous, its zeros form 
a closed set. Let p be the smallest positive value of x for 
which C(x) vanishes; then C(p) = C(— p) = 0 and we set: 
(2) C(x - p) = S(x). 
From this we see that S(0) = 0; S(p) = 1; 8(2p) = 0. 
Since S(x) and C(x) are not zero simultaneously, they are 
independent functions, and therefore every member of the 
family is a linear combination of them. But, by I, S(x + h) 
and C(x + h) are members of the family, and we may set 
(3) S(x +h) = AS(x) + BC(x)y 

(4) C(x + h) = A'S(x) + B'C(x). 
Putting in succession x = 0, x = p in (3), and taking account 
of the particular values previously found, we obtain: 
(5) S(h) = B, SQt + p) = C(h) = A, 

and (3) becomes: 

(6) 8(x + h) = 8(x)C(h) + S(h)C(x). 

We may use this to obtain the value of S(— p). For if we 
put h = — x, we obtain: 

0 = S(x - x) = S(x)C(- x) + S ( - x)C(x), 
0 = C(x)[S(x) + S(- x)]. 

Consequently, S(x) = — S(— a) for all values of a? such that 
C(x) 7e 0, and hence, by the definition of p, for all values of x 
such that — p < x < p. But, since S(x) is continuous at all 
points, we have also 

S(- p)=- S(P) = - 1. 

This enables us to evaluate the coefficients in (4) by putting 



1923.] QUALITATIVE DEFINITIONS OF FUNCTIONS 59 

in succession x = 0, x = — p. This gives 

(7) C(h) = B'} CQi - p) = 8(h) = - A', 

and (4) becomes 

(8) C(x + h) = C(x)C(h) - 8(x)8(h). 
If we put h = — x in (8), we find (at least for values of x 
numerically less than p) 

(9) 1 = C\x) + S2(x). 

Consider now a value of x between 0 and p. For such a 
value, we know from the continuity of the functions and the 
definition of p that S(x/2) and C(xj2) are both positive. 
Consequently, by combining (8) (for h = x) and (9), we may 
obtain the formulas: 

(10) S(x/2)= ^ - ^ j & , C(xl2) = yj1-*^ -

Combining these relations with (6) and (8), and the values 
obtained above, 8(0) = 0, 8(p) = 1, (7(0) = 1, C(p) = 0, 
we may calculate by a finite number of operations the values 
of S(x) and C(x) for any value of x, which divided by p gives 
a proper fraction expressible as a terminating decimal in the 
binary scale. Again, since the relations and values used are 
all satisfied by S(x) = sin (irxfep), C(x) = cos (Tx/2p), the 
values so obtained will agree with the values for these func­
tions. But, since 8(x) and C(x) are continuous, and are 
equal to these functions for a set of values everywhere dense 
in the interval (0, p), they must be identical with these 
functions throughout the entire interval. 

Finally, by using the relations (6) and (8), and taking for h, 
p or — p (recalling that C(— p) = 0, S(— p) — — 1), we 
may show that if the functions given above represent S(x) 
and C(x) in any interval, they represent them in an interval 
longer by p in each direction, and hence for all values of x. 
This justifies our contention that under assumptions I, I I and 
I I I (a) the family AG(x) + BH(x) is of the form A sin mx 
+ B cos mx. Furthermore, if the family is given, we may 
determine S(x) and C(x) as above, as well as p, and then 
define sin x and cos x by the relations: sin x — S(2pxJTr)\ 
cos x — C(2px/w). 
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5. Consequences of I, I I , I I I (6). We next deduce the con­
sequences of I, II , I I I (b). If F(x) is the non-vanishing solution 
given by I I I (b),F(x + c) and F(— x), which are members of 
the family by I and evidently never vanish, must be linearly 
dependent on F{x), giving: 

(11) F(x + c) = kF(x); F{ - x) = jF(x). 

As the second equation reduces to P(0) = jF(0) for x = 0, we 
see that j = 1. Combining this result with the first, we have, 
taking c = (xi + #2)/2, 

F(x0 = F(^±^ + X^-2\ = kF(Xl-*A 

(12) =kF(^^1\ 

aF^+3+^pyFixù. 
Since x\ and x2 are arbitrary, this shows that the non-vanishing 
solution F{x) is a constant, and we may take the function 
F(x) equal to 1. 

If E(x) is some non-constant member of the family, it must 
take on both positive and negative values, since otherwise by 
adding or subtracting a constant, we should obtain a second 
member of our family which never vanishes. Hence it must 
vanish at some point in such a way that the function is positive 
for all values of the variable in some left (or right) neighbor­
hood of this point, and that in the right (or left) neighborhood 
of the same length this is not the case. Let b be the value 
of x at this point, and set 

(13) P(x) = E{b + x), 

so that P(0) = 0; and note that all members of the family 
may be expressed in the form A\P(x) + 5i . Then, in par­
ticular, 
(14) P ( - x) = jP(x) + k; 

and, on putting x — 0, we see that k is zero, and P(—• x) 

= jP(%)- Since 
(15) P(x) = jP(- x) = j*P(x), 

we see that j = + 1 or — 1, and it cannot be + 1, from the 
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way in which b was selected, for this value used with (13) and 
(15) would give 

E(b +h) = E(b - h), 

and hence the behavior of E(x) would be the same on the 
right and left neighborhoods of b. Hence j = — 1, and 

(16) P(x) = - P ( - x). 

To obtain the addition theorem for P(x), we notice from I 
that 
(17) P(x + h) = AP{x) + B. 

On taking in succession x — 0, and x = — h, using (16) in 
the latter case, we obtain: 

(18) PQi) = B, 0 = P(0) = - APQt) + B. 

These relations show that A = 1, and reduce (17) to 

(19) P(x+ h) = P(x) + P(h). 

If we set P ( l ) = m, we see from (19) and (16) that, for rational 
values of x, the values of P{x) equal those of mx. Hence, 
from the continuity of the function, we have P(x) = mx for 
all values. Therefore, we have proved that the family is 
A + Bx in this case. 

6. Consequences of I, I I , I I I (c). Finally let us consider the 
consequences of I, I I and I I I (c). LetP(tf) be a non-vanishing 
member of the family, and let c be a number such that 

(20) F(x+ c) 9± kF(- x+ c). 

There must be some choice of the function F(x) and c, for if 
(20) were not true for some value of c, the reasoning used at 
the beginning of the discussion of the last case would show 
that F(x) reduced to a constant, and if this held good for all 
the non-vanishing solutions, they would all be linearly de­
pendent, and I I I (c) would be violated. We set 

F(x+c) + F(-x + c)_ 

We) ( }' 
(21) 

F(x+c)-F(-x +c)_ 
j? o W , 

where if is a constant to be determined later. I t follows 
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from the definitions that 

™ m = i, s(o) = o, 
W C(x) = C ( - z), 8(x) = - S(- x). 

As before, we obtain the addition theorems by noting that 
(23) S(x +h) = AS(x) + BC(x), 
(24) C(x + h) = A'S(z) + BfC(x), 

and evaluating the coefficients. On putting x = 0 in (23), 
we find, by using (22), that 

(25) 8(h) = B; 

while, on putting x = — h, we find 

(26) 0 = S(h - h) = - 4S(A) + J5C(A). 

The last two equations show that 

(27) 0 = 8(h)[C(h) - A], 

and hence that A = CQi) when 8(h) ^ 0. Thus, with this 
restriction, (23) becomes 

(28) S(x +h) = S(x)C(h) + S(h)C(x). 

We remove the restriction by noting that if S(h) = 0, while 
S(x) is not 0, we may interchange the roles of x and h; finally, 
if S(x) = S(h) = 0, (23) and (25), which hold in all cases, 
show that S(x + h) = 0, and thus (28) holds good in this case. 

If we put x = 0 in (24), we find C(h) = B', and (24) be­
comes 
(29) C(x + h) = Af8(x) + C(x)C(h). 

If we observe that A' is a function of h, interchange x and h 
and subtract, we find 

(30) Af(h)S(x) = Af(x)S(h). 

This is an identity in x and h. If we select a value of x, x\ 
for which S(x\) T^ 0, and put A'(xi)/S(xi) = k, we see that 
A'(h) = kS(h), and (29) becomes 

(31) C(x + h) = C(x)C(h) + kS(x)S(h). 

The number k is positive, negative, or zero. The last case 
cannot occur, since then we should have 

(32) C(x + h) = C(x)C(h), 1 = C(h - h) = <72(A), C(h) = 1. 
But this would show that C(h) was a constant, and would 
reduce (28) to (19), which would prove the family to be 
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A + Bx. This would not satisfy I I I (c). Also k cannot be 
negative (= — kf), for then we should have 

, . C(x + h) = C(x)C(h) - k,8{x)SQi), 
{ } 1 = C(h- h) = C2(h) + k'S2(h). 

The second equation shows that for a value of h for which 
S(h) 7e 0, C(h) is less than 1. But C(h) is always positive, 
since it never vanishes. Since it is continuous, it takes on all 
values between this value and unity. Since cos (w/2n) is nearer 
unity than any fixed number for some value of n, we may find 
an n and an hi such that 

(34) C(h) = cos (TT/2"), 

and since, as a consequence of (33) , we have 

(35) C(2h) = 2C\h) - 1, 

which is a relation satisfied by the cosine, we see that 

(36) C ^ A i ) = cos (ir/2) = 0, 

which shows that CQi) is not a non-vanishing solution, and 
hence that the assumption that k is negative leads to a con­
tradiction. 

Since k is positive, and becomes kjm1 if the factor K in the 
definition of S(x) is replaced by K/m, it may be made unity 
by a suitable choice of K, and (31) becomes 

(37) C(x +h) = C(x)C(h) + S(x)S(h). 

For h = — x, this becomes 

(38) 1 = C(x - x) = C2(x) - S2{x), 

while for h — x, we get, using (38), 

(39) C(2x) = 2C2(x) - 1, C(x/2) = yj1+^~> 

where the sign is determined by the fact that C{x) is always 
positive. Let C(x\) be a value of C(x) different from unity, 
and hence greater than unity by (38). Then C(xi) = cosh mxi, 
for some positive m, since cosh x takes on all values greater 
than 1 for positive values of x. Hence we see from 

(40) (7(0) = cosh 0, C(x{) = cosh mxi, 

and from the fact that (39) is true for the function cosh mx, 
that this function has the same values as C(x) for all values 
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of the form 2nX\ or X\j2n. Also for these values, we see from 
(38) that S(x) = j sinh mx, where j is plus or minus one, and 
must be the same for all such values of x, since (28) shows that 
(41) S(2x) = 2S(x)C(x). 

Finally, since (28) and (37) are the addition formulas for 
sinh mx and cosh mx, we see that these functions agree with 
S(x) (to within a sign) and C(x) for all multiples of Xi whose 
fractional parts are terminating decimals in the binary scale, 
and hence, since all the functions concerned are continuous, at 
all points. Thus under I, I I and I I I (c), the family is neces­
sarily A sinh mx -f- B cosh mx. 

7. Conclusions. In conclusion, we notice that since I and 
I I alone must determine one of the three types of families 
discussed, we may use any characteristic property of the 
types in place of I I I . Thus, we might replace I I I (a) by the 
assumption "Some member of the family vanishes twice," or 
"Every member of the family is bounded," This last state­
ment may be extended so as to give an alternative form of 
the assumption I I I , in terms of bounded, instead of non-
vanishing functions. That is, I I I (a), (6) and (c) above 
may be replaced by the following postulates: 

I I I (a'). There exist two linearly independent members of 
the family which are bounded. 

I l l (&')• There exists one member of the family which is 
bounded, and all other bounded members of the family are 
linearly dependent on this one. 

I l l (<?')• No member of the family is bounded. 
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GROUPS IN WHICH T H E NUMBER OF OPERATORS 
I N A SET OF CONJUGATES IS EQUAL TO T H E 

ORDER OF T H E COMMUTATOR SUBGROUP* 

BY G. A. MILLER 

1. Introduction. From the fact that the commutator 
quotient group is abelian, it results directly that there is no 

* Presented to the Society, Sept. 7, 1922. 


