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IMPOSSIBILITY OF RESTORING UNIQUE 
FACTORIZATION IN A HYPER-

COMPLEX ARITHMETIC 

BY L. E . DICKSON 

1. Introduction. Most numbers a + be, where a and b are 
integers and e2 = 0, admit of several factorizations into inde­
composable numbers. It is proved in § 3 that we cannot 
restore unique factorization by defining hypercomplex ideals 
analogous to algebraic ideals, nor (§ 4) by the introduction of 
any sort of ideals obeying the laws of arithmetic. L. G. du 
Pasquier* has made statements, omitting proofs, concerning 
the failure of unique factorization after introducing ideals, 
apparently meaning those analogous to algebraic ideals. 

2. Hypercomplex Integers. Consider the hypercomplex 
numbers x = a + be with rational coordinates a, b, where 
e2 = 0. Thus (x — a)2 = 0. This quadratic equation has 
integral coefficients if and only if a is integral. As our integral 
hypercomplex numbers we shall take those of an infinite 
system of numbers a + be, where a is integral and b rational, 
such that the system has a basisf 1, ce, i.e., is composed of 
their linear combinations with integral coefficients. Since we 
may take ce as a new unit e whose square is zero, we may 
assume that a + be is integral if and only if a and b are both 
integers. 

* VlERTELJAHRSSCHRIFT, ZURICH, Vol. 54 (1909), pp. 116-148. 
L'ENSEIGNEMENT, vol. 17 (1915), pp. 340-3; vol. 18 (1916), pp. 201-260. 
NOUVELLES ANNALES, (4), vol. 18 (1918), pp. 448-461. 
COMPTES RENDUS DU CONGRÈS INTERNATIONAL (Strasbourg), 1921. 

t We obtain uninteresting results if we omit the assumption of a basis 
and call a -f- be integral if a is integral and b rational. I t is a unit if a 
— db 1. If r 5* 0, p = r + se is " associated" with its product r by the 
unit 1 — esjr. Hence the classes of associated numbers whose real co­
ordinates are not zero are in (1, 1) correspondence with the real integers 
and obey the laws of divisibility of integers. But se is associated only 
with db se. Now te is divisible by every r + se, r 9e 0, the quotient 
being et/r. 
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The units (integral divisors of 1) are ± 1 + be, where b is 
integral. A simple example shows that the laws of divisibility 
fail. Let p be any odd prime. Then 

(1) p-p = (p+ he)(p — he), 

and p + te is indecomposable and is associated with p + le if 
and only if t = I (mod p). The product of p — he by the unit 
1 + e is p + (p — h)e. Hence if we give to h the values 
O* 1> * * •> h(P — 1) m (1)> w e obtain the | ( p + 1) essentially 
different ways of factoring p2 into indécomposables. As a 
generalization of (1), 

(p + he)(p + le) = (p + xe)(p + ye), x + y = h+ I 

3. Hypercomplex Ideals. As in the theory of algebraic 
numbers, define an ideal to be an infinite set of our hyper-
complex integers which is closed under addition and sub­
traction and is such that the product of any number of the 
set by any hypercomplex integer is equal to a number of the 
set. Since (r + se)e = re, every ideal contains a number te, 
where t 9e 0. Let m be the minimum positive integer such 
that me is in the ideal. The products xme of me by all hyper-
complex integers x + ye constitute a principal ideal, denoted 
by [me]. Consider an ideal I which contains xme, where x 
ranges over all integers, and further numbers r\- + Sie, where 
each Ti + 0. The positive greatest common divisor r of the 
Ti is a linear combination of them with integral coefficients. 
The same linear combination of the r; + S{e is a number 
r + se of I. Write qi for the integer ri/r. Then / contains 

ri + sie — qi(r -f- se) = h^e, hi E= Si — qiS. 
Hence hi = pirn, where pi is an integer. Thus 

r% + Sie = pi(me) + q{{r + se), 
so that I is composed of linear combinations of me and r + se 
with integral coefficients (i.e., has a basis). Finally, the 
product of every number of / by every hypercomplex integer 
must belong to I, which will be true if the products by e 
belong to / , i.e., if re is in I. Thus r = qm, where q is an 
integer. Hence 

(2) / = [me, qm + se], q > 0, m > 0, 0 ^ s < m, 
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where the bracket signifies all the linear combinations of the 
two enclosed numbers with integral coefficients. 

The product of two ideals is defined to be the totality of 
linear combinations with integral coefficients of the various 
products of numbers of the first ideal by numbers of the 
second. Hence 

[te]I = [tqme] = [te]P, P = [qme, qm]. 

The ideal P is distinct from I unless q = 1, s = 0. Hence the 
laws of arithmetic do not hold for our ideals.* 

The preceding special difficulty may be obviated by ex­
cluding one-based ideals [te]. Hence we shall supplement our 
definition of an ideal by making the assumption that it con­
tains numbers which are not divisors of zero, i.e., multiples 
of e. Now every ideal is of the form (2). 

If q = 1, (2) is composed of the products of m + se by all 
hypercomplex integers and hence is called a principal ideal 
{ m + se}. If q > 1, (2) is not a principal ideal. We shall 
call q the mass of the ideal (2). Hence an ideal is a principal 
ideal if and only if its mass is unity. 

The mass of a product of two ideals is the least common 
multiple of their masses. For, the product of (2) by 

J = [ne, pn + te] 
is 

IJ = [p-mne, q-mne, pqmn + Ice], k = qmt + pns. 

Let G be the greatest common divisor of p = PG and q = QG, 
whence P and Q are relatively prime. Then G is a linear 
combination of p and q. The same linear combination of the 
first two entries in IJ is Gmne. Hence 

IJ — [Gmne, PQGGmn + he], 
whose mass is PQG, i.e., the least common multiple of p and g. 

I t follows at once that the mass of the product of any 
number of ideals is the least common multiple of their masses. 
The latter is unity if and only if all the masses are unity. 
Hence a product is a principal ideal if and only if each factor 
is a principal ideal. In other words, every factor of a principal 
ideal is itself a principal ideal. 

* More simply since [e][ê] is not an ideal. 



1922.] HYPERCOMPLEX ARITHMETIC 441 

Consequently our ideals fail to explain our difficulty (1), or 
the equivalent in principal ideals: 

(10 {p}-{p\ = \p+ke}{p-ke}. 

Since we saw that p + te is an indecomposable number, we 
conclude that {p + te} is not a product of principal ideals and 
not a product of any ideals. The relation (1') between dis­
tinct indecomposable ideals shows that our ideals do not obey 
the laws of arithmetic and do not explain our difficulty (1). 

4. Impossibility of the Restoration of Unique Factorization. In 
§ 3 we saw the futility of the introduction of hypercomplex 
ideals defined essentially as in the theory of algebraic numbers. 
We shall now prove that it is impossible to restore unique 
factorization by the introduction of ideals of any kind such 
that a number and its products by the units all correspond to 
a unique ideal (provided the number be not a divisor of zero) 
and such that the product of two numbers corresponds to the 
product of the corresponding ideals. 

The numbers a = 3, b = 3 + e, c = 3 + 2e are indecom­
posable and no two are associated. We have 

(3) ac = b\ be = a2(l + e), ab = c2(l - e). 

Let a, (3, y be the distinct ideals ^ 1 which correspond uniquely 
to a, b, c, respectively. Since 1 + e and 1 — e are units, 
we have 

(4) ay = /32, (3y = a2, afi = y\ 

A prime ideal divisor ô 4= 1 of ce must divide /3 and y. Write 

a — aid, j8 = jSiÖ, y = 718. 
Then 

(5) axyi = /3i2, £171 = «i2, a^i = 7i2-

No one of ai, ft, 71 is unity. For, if <x\ = 1, then /3i7i = 1, 
whence j3i = 71 = 1, whereas a, /3, 7 are distinct. Since the 
relations (5) are entirely similar to relations (4), it is impossible 
to restore, in a finite number of steps, unique factorization 
in (3) by the introduction of ideals. 
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5. Factorization. There is only a finite number of ways of 
factoring into indécomposables and each way involves only a 
finite number of factors. First, to obtain all pairs of factors 
of te, express t as a product of two integers x, w in all possible 
ways; the factors are x + ye, we, where 0 ^ y<x, if we retain 
only one of associated numbers. To factor a + be, where 
a > 0, express a in all possible ways as a product xz of two 
integers > 1. For each such pair x, z, and for 0 ^ y < x, 
a + be has the factors x + ye and z + we, where w is deter­
mined uniquely by xw + yz = b, the case of a fractional w 
being excluded. 

The only pairs of factors of pk (fc ^ 2), no one a unit, are 

pr + ye, pk~2r(pr - ye), 

where r ranges over the positive integers = \k, and 0 ^ y < pr. 
The only pairs of factors of pk + se are 

pr + ye, pk~r + (<r — pk~~2ry)e, 

where r ^ \k and p r divides 5 = <rpr. 
If p and q are distinct primes and k ^ /, the only pairs of 

factors not units of pkql are J, pk~2rql~2sK, where 

J = prqs + ye, K — prqs — ye, 
0 ^ r ^ |fc, 0 ë * S H 0 ^ 2/ < £>rg8; and pfc~2rJ, ql~2sK 

(r < \k). In particular pq has only the factors p, q. 
Regarding factors of J, note that pq + se has the unique 

factors, apart from unit factors, p + ye and q + we, where 
0 ^ y < p, qy ^ s (mod p), and w is determined by pw + ?/g 
= s. Next, p2q + se has the factors p2 + ye and g + we, 
where w is uniquely determined by 0 ^ w < q, p2w = s 
(mod g), and 2/ is then determined by p2w + qy = s. I t has 
no further pairs of factors if s is prime to p. But if s = Sp, 
the only additional pairs are the p pairs p + 1/0, pg + we, 
where 0 ^ y < p, w = S — qy. 
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