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Thus, to the naked eye the courses of two curves, which at a 
common point have the same tangent and the same radius of 
curvature, are in the vicinity of that point so nearly identical 
as to make them appear indistinguishable. The introduction 
of the notions of axis of aberrancy and osculating parabola 
serves to magnify the differences between the two curves in 
such a way as to enable us to distinguish between them. 
Again, if the two curves also have their osculating parabolas 
in common, we may judge of their divergence by means of their 
osculating conies. Thus the notion of osculant serves the dif­
ferential geometer for the same purpose as does the micro­
scope in the laboratory of the biologist. It magnifies the in­
finitesimal differences between two different curves sufficiently 
to cause them to make an emphatic impression upon the mind. 

Thus the notions, osculant and penosculant, are the funda­
mental concepts of differential geometry. The systematic 
investigation of the magnitudes, loci and envelopes deter­
mined by the various classes of osculants and penosculants 
and the relations which exist between them makes up the 
whole subject matter of differential geometry. Differential 
properties of a general curve are merely integral properties of 
its osculants and penosculants. 

THE UNIVERSITY or CHICAGO, 
December y 1915. 

A CERTAIN SYSTEM OF LINEAR PARTIAL DIF­
FERENTIAL EQUATIONS. 

BY DR. H . BATEMAN. 

(Read before the American Mathematical Society, February 26, 1916.) 

1. IT is known that if a function V(xly ylf zlf h; x2, y% %2, h\ 
• • • ; xn, yn, 2n, tn) satisfies the system of %n(n + 1) partial 
differential equations* 

m dW i dW i ^ E L ^ J Ü l ( =1 9 Ï 
K) dxvdxq

 + dyvdyq
 + 'dzvdzq dtpdtq

 {V' q 1>Z>'"> n) 

it becomes a solution of the reduced system ot |(w — l)n 

* See for instance H. Bateman, Messenger of Mathematics, March, 
1914, p. 164. 
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equations* when the point (xn, yn, zn, L) coincides with 
(xn-i, Vn-iy Znr-i, tn~i). Such a function V will be called a 
multiple wave function^ of rank n and will be denoted by F ( w ) 

when we wish to indicate its rank. 
I t is easy to prove that such functions exist, for if we write 

ap = (xp - iyP)eito - i(zp ± tp) 

PP = (xp + iyP)e~i(a - i(zp =p tp) 
the function 

/»27T 

(3) V = I f{aiy a2, - • •, an; ft, ft, • • -, ft; œ)dœ 
Jo 

satisfies the system of equations (1) and possesses the property 
just mentioned, ƒ being an arbitrary function with finite second 
derivatives. Let us now consider two vector functions Hp*q 

and Ep'q whose components are defined by equations of type 

,A. T T „ n d2V dW _ d2V dW 
(A) HJ>,q = F, p>q = dypdzq dyqdzp

y x dxpdtq dxqdt 
v 

I t is easy to verify that when V is defined by an equation of 
type (3) the three partial differential equations of type 

(5) HJ>'* = ± iEx™ 

are satisfied, the upper or lower sign being taken according 
as the upper or lower sign is taken in (2). 

A multiple wave function V which satisfies the three partial 
differential equations of type (5) will be called right-handed 
or left-handed with respect to p and q according as the upper 
or lower sign is taken. If, however, both Hp>q and Ep>q 

are zero it will be called neutral with respect to p and q. When 
a multiple wave function is either right-handed or neutral 
with respect to each pair of numbers p, q it will be called a 
right-handed function and will be denoted by the symbol V+. 
A left-handed function is defined in a similar way and will be 
denoted by the symbol F_. The function given by (3) is 
either right-handed or left-handed according as the upper or 

* There are of course exceptions to this rule as for instance when 

V = [(Xn - Xn-l)2 + (Vn - 2/n-l)2 + (zn ~ Z«-l)2 - ft» - «n-l)2]"1 . 

+ If we regard the i's as time variables the units must be chosen so that 
the velocity of propagation of the waves is represented by unity. 
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lower sign is taken in (2) ; it is neutral with respect to p and q 
when ƒ satisfies the partial differential equation 

( 6 ) a2/ = a2/ 
dapdf3q daqdl3p ' 

A multiple wave function may of course be neutral with 
respect to one pair of numbers p, q and either right-handed or 
left-handed with respect to another pair; it is only completely 
neutral when all the vectors Hp,q and Ev,q are null. The 
function V represented by (3) is thus completely neutral when 
all the partial differential equations of type (6) are satisfied. 
A completely neutral function may be denoted by the symbol 
Vo. In general, of course, a multiple wave function does not 
possess the properties of left-handedness, right-handedness and 
neutrality, because it is of the form V = V+ + F_. It may 
happen that V- is neutral with respect to p and q, while F+ 
is not; in this case the function V is right-handed with respect 
to p and q; moreover V+ may be neutral with respect to r 
and s while V- is not and then V is left-handed with respect 
to r and s. Thus a multiple wave function may be partially 
right-handed, partially left-handed, and partially neutral. 

2. When the point (xn, yn, zn, tn) coincides with (xn-i, 
yn~-if Znr-i, tn-i) we shall suppose that the function F ( n ) reduces 
to a function which we shall denote by the symbol F(w~1}. 
We may thus form a series of multiple wave functions 

(7) 7 i , F2 , . . . J n - i J n , •••, 

possessing the property that, when the n points (xp, yp, zp, tp) 
coincide in succession, Vn reduces tç> Vn-i, Vn-i to Vn-2> and 
so on, the last function V\ being a simple wave function. 
Instead of considering the process of reduction it is more 
interesting to consider the process of the development of a 
multiple wave function Vn from a simple wave function Vi. 
There is perhaps a slight analogy between this and the process 
of development of an organism from a single cell by repeated 
division. This analogy at once suggests the interesting prob­
lem to find a function Vi and a method of development such 
that a certain characteristic property is preserved in the 
transition from Vn~i to Vn. This problem will be put on 
one side for the present and we shall use our analogy simply to 
form a convenient nomenclature. 
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We shall regard V as the characteristic function of an 
( organism ' and the point xp, yp, zp, tp as associated with a 
' cell ' (p) belonging to the organism. We see from (4) that 
a vector field (Hp*q, Ep'q) is associated with each pair of 
cells of the organism, and it is easy to verify that Maxwell's 
equations 

(8) 

dHz
p>q 

dy8 

dEx
p>q 

dxs 

dEx
p>q 

dys 

dHx
p>q 

dxs 

dHy™ dEx
p>q 

dzs dts ' 

dEy
p>q dEz

p>q __ 0 

dy8 dz8 

dEy
p>q dHx

p'q 

dzs dts ' 

dy» dzs 

1,2, • ••, n) 

are satisfied for each set of variables xs> y8, %s, t8 provided V 
can be represented as the sum of two integrals of type (3), 
one of which is right-handed and the other left-handed. 

If now we take the real parts of the vectors Hp,q, Ep,q we 
see that an electromagnetic field can be associated with a pair 
of cells (p) (q) except when the characteristic function V is 
neutral with respect to these two cells. 

3. Let us now write %v~ixp — yp, T)v=ixp-\-yp, <rp = zp — tp, 
rp = zp + tp and expand the integral (3) by Taylor's theorem 
and Fourier's theorem; we then obtain a formal expansion of 
type 

7+ = 2 
Ml! {JL2l " ' Mn! Pi I V2\ • • • Vn\ 

(9) X 'da^dvf* • • • dan^dn"1 • • • drn
Vn 

F(<Tl, (T2, ' * *, CTn', T\, T2, ' ' ', Tn', 

Ml + M2 + ' ' " + Mn "" Vl " " ^2 — ' * * — ?n) . 

The expansion for V- is of a similar type except that the 
positions of the variables a and r are interchanged and the 
function F is generally different. 
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If we assume that a right-handed multiple wave function 
can be expanded by Taylor's theorem in a series of ascending 
powers of £1, £2, • •m, %n', rju V2> ' ' '> Vn, then when we substitute 
this series in the partial differential equations (1) and (5) and 
equate the coefficients of the different powers of the £'s and rj's 
to zero we find that the series must necessarily have the form 
(9). If we limit the function V+ to be a polynomial in the 
f's and rj's, s o a s to avoid questions of convergence, we see from 
the form of the series that it can be expressed in the form (3). 
Similarly it can be shown that a left-handed multiple wave 
function which is a polynomial in the £'s and rç's can be ex­
pressed in the form (3) provided we take the lower signs in (2). 

I t follows from a theorem given in a former paper* that if 
the quantities u\, u2, - - -, un', vi, V2, • • *, ^n are defined by the 
equations 

<rp = up+ ÇpO(ui, u2, • • -, un; vi, v2, • -, vn)> 

VP 

e 
(!0) VP 

TV = Vp + -j, (p = 1, 2, ••• , n) 
then the function 

d(ulf U2, • • -, Un) Vi, V2, • • -, Vn) 
(11) V = d(<ri9 <r2y • • •, <rn; n , r2, • • •, r n ) 

f(ui,u2, --,un;v1, v2, • • - , Î>») 

is a right-handed multiple wave function, 6 and ƒ being arbi­
trary functions of the 2n parameters u±, u2, • • -, un; vi, v2, 
* ", vn* If we expand this function in powers of the £'s and 
rj's using the generalized Darboux theoremf we obtain a series 
of type (9) in which 

To obtain the corresponding left-handed multiple wave 
function we must interchange the places of a and r. 

4. Let us now consider the multiple wave functions which 
are homogeneous polynomials of degrees mi, m2, • • •, mn with 
respect to the cells (1), (2), ••• , (ri) respectively. Since a 

* Loc. cit. 
+ G. Darboux, Comptes Rendus, vol. 68, p. 324. Hermite, Cours d'An­

alyse. 4th edition, p. 182. See also T. J. Stieltjes, Ann. d. VEcole Nor­
male (3), vol. 2 (1885), p. 93. H. Poincaré, Acta Mathematica, vol. 9. 
K. de Fériet, Thèse, Paris, Gauthier-Villars (1915). 
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right-handed polynomial of this type can be expressed in the 
form (3) it follows that the function ƒ must be of degrees mi, 
m*, • • \, win in the pairs of variables ah Pieib>; a2, I32e

i<a; • • • ; 
«n, Pnei<û respectively and a polynomial of degree mi + m2 + 
• • • + % in e~i(°. The number of arbitrary constants in the 
most general expression of this kind is 

(13) N+ = (mi + l)(m2 + 1) • • • (m» + l)(mi + m2 + 

• • • + mn + 1), 
hence we may conclude that there are N+ linearly independent 
multiple wave functions which are right-handed homogeneous 
polynomials of degrees mi, m2, • • •, m» with respect to the 
different cells. The number of linearly independent left-
handed polynomials is represented by the same number. 

To find the number of completely neutral polynomials of a 
given type we proceed as follows: Adopting a generalization 
of a method used by Cayley* we may derive one multiple 
wave function from another by operating on the latter any 
number of times with operators of type 

(14) x"à-q
+^+Zp^+tph 

This operator does not alter the character of the function 
relative to the cells p, q. An operator of the type 

d d . d , . d 
(15) yv -z zp T ixp — + itp T— 

*vdzq
 pdyq

 pdtq
 pdxq 

gives a new right-handed multiple wave function when it 
operates on a multiple wave function which is either right-
handed or neutral. So in this case the neutrality is lost. 

We shall now show that the equation 

av av av av 
(16) xp^+ ypW+ z,w+ tpWq = 0 
is incompatible with the conditions of neutrality Ep>q = 0, 
flp,q = o, when F is a homogeneous polynomial of degrees 
mi, m2, • • •, mn with respect to the different cells. 

If we differentiate (16) with respect to xp we find that 

* Liouville's Journal, vol. 13 (1848), p. 275; Collected Papers, vol. 1, 
p. 397. 
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ËE+ dW dW dW bW 

dxq
 pdxpdxq dxpdyq

 pdxpdzq
 pdxpdtq 

or, since V is neutral, 
dJL+ dW dW dW dW 

dxq
 pdxpdxQ ^pdypdxq

 pdzpdxq
 pdtpdxq~~ 

Since V is homogeneous this equation reduces to 

dV 

and so (16) would imply that all the derivatives of V with 
respect to the variables 

%qy yqt %q> *q a r e zero. If then we suppose 
that V is not independent of these variables we may conclude 
that equation (16) is impossible. 

It is now clear that by means of successive operations of 
type (14) we may derive a simple wave function of degree 
mi + m2 + h % from each completely neutral multiple 
wave function of degrees mi, m2, • • •, mn, and that, conversely, 
we may derive a completely neutral multiple wave function of 
degrees mi, m2, • • •, mn from each simple wave function of 
degree mi + m2 + h mn. Hence it follows that the 
number of linearly independent polynomials of each type is 
the same and in the case of the simple wave function this 
number is known to be* 

(mi + m2 + • • • + mn + l)2. 
Denoting this number by No, we can say that the number of 
linearly independent neutral polynomials of degrees mi, m2, 
• • •, mn respectively with regard to the different cells is No. 
Since the neutral polynomials are included among both the 
right-handed and left-handed polynomials, we can expect 
that the total number of linearly independent multiple wave 
functions which are homogeneous polynomials of degrees 
mi, m2, • • •, mn will be represented by 2N+ — No. 

JOHNS HOPKINS UNIVERSITY, 
BALTIMORE, MD., 

December 28, 1915. 
* This follows at once from (13). See also Heine, Handbuch der Kugel-

functionen (1878), p. 472. 


