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18. In this paper Dr. Lennes describes in detail the con­
struction of a set which is non-measurable in the sense of 
Lebesgue. The general method is the same as that used by 
Van Vleck (Transactions, volume 9, page 237), but each step 
is made to depend upon explicitly formulated postulates. 

19. In two papers published in the American Journal of 
Mathematics, volume 33, Dr. Lennes formulated a certain 
body of theorems on polygons and polyhedrons. With one 
exception these were confined to figures having a finite number 
of sides or faces. In the present paper many of the results 
obtained in these papers are extended to polygons and polyhe­
drons having an infinite number of sides or faces. 

F. N. COLE, 
Secretary. 

PROOF OF A THEOREM DUE TO PICARD. 

BY PROFESSOR W. R. LONGLEY. 

(Read before the American Mathematical Society, April 27, 1912.) 

CONSIDER the ordinary differential equation of the first 
order and second degree 

(1) Ap2 + 2Bp + C = 0 (p = dy/dx), 

in which the coefficients are power series in x and y vanishing 
when x = y = 0 

(2) A = ax + axy + • * -, B = bx + hy + • • -, 
C = ex + ay + • • •. 

Picard has proved that in the general case* every integral curve 
(real curve in the cartesian plane) of equation (1) which comes 
infinitely near the origin, actually reaches the origin with a 
determinate tangent. The prooff is based upon the existence 
of an analytic integral curve passing through the origin, a 
condition which is satisfied in the general case. But such 
a curve does not always exist, and the following proof, which 

* By the general case it is meant that there exists no particular relation 
of equality among the coefficients of (2). 

t Picard, Comptes Rendus, vol. 120 (1895) p. 524; Math. Annalen, vol. 
46 (1895), p. 521; Traité d'Analyse, vol. 3, pp. 217-225. 
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makes no use of its existence, gives more information concern­
ing the form of the integral curves near the origin. 

To examine the behavior of integral curves in the neighbor­
hood of the origin we may limit the coefficients in equation (1) 
to terms of lowest degree and we suppose that A, B, and C 
contain only first degree terms in x and y. Solving equation 
(1) f or p gives 

where A = B2 — AC. Through every point at which A does 
not vanish there are two integral curves with distinct tangents 
depending on the choice of the sign of the radical. Suppose 
this choice has been made. Then the form of equation (3) 
shows that the slope depends only on the ratio y/x and hence 
the slope of an integral curve crossing the line y = mx is the 
same at every point of the line. From this it follows that it is 
possible to trace a continuous integral curve by making the 
radius vector from the origin turn always in the same direction, 
provided the curve does not reach a point at which A = 0 
where the sign of the radical could be changed. 

The form of the integral curves depends on the nature of 
the discriminant locus, the equation of which is A = 0, and 
there are two cases to be considered : (1) when the discriminant 
locus has a conjugate point at the origin, and (2) when the 
discriminant locus consists of two distinct branches through 
the origin. 

In the first case A vanishes f or x = y = 0 and is positive for 
all other values of x and y. Hence if an integral curve does not 
pass through the origin it may be followed by making the 
radius vector rotate always in the same sense about the origin. 
I t is conceivable that an integral curve might have the form 
of a spiral approaching the origin asymptotically. To do this 
the slope must change sign four times during one revolution 
of the radius vector; twice by passing through zero (at the 
highest and lowest points) and twice by passing through 
infinity (at the extreme right and left points). To see that 
this is impossible we consider equation (3). The lines 
A (ax + aiy — 0), B(bx + b\y = 0), and C(cx + C\y = 0) pass 
through the origin and by a rotation of the axes the line B 
may be taken for the X-axis. The line C is the locus of points 
where the slope of integral curves is zero. Starting at any 
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point near the origin on the positive X-axis with a definite 
sign for the radical we may follow an integral curve by making 
the radius vector rotate always in a counterclockwise direction. 
If the slope changes sign by passing through zero when the 
curve crosses the line C above the X-axis, then p will not 
change sign when the same line is crossed below the X-axis, 
because the sign of the radical remains the same while the 
sign of the quantity B is reversed. Hence the curve can not 
meet the positive X-axis a second time and the spiral is 
impossible. 

In the second case the discriminant locus has two distinct 
branches passing through the origin. In one of the angles 
between the branches A is positive and there exist real integral 
curves, while in the other angle A is negative and there are no 
real integral curves. By a transformation of coordinates we 
may take the two branches of the discriminant locus for the 
coordinate axes so that A is positive in the first and third 
quadrants and negative,in the second and fourth quadrants. 
Since A = B2 — AC is positive in the first quadrant and 
negative in the second it is evident that the lines A and C 
must pass through the origin with positive slope, that is, they 
must lie in the first quadrant. In this case an integral curve 
can not have the form of a spiral, but it is conceivable that it 
might oscillate between the coordinate axes an infinite number 
of times approaching the origin. To see that this is impossible 
suppose that we choose a definite sign for the radical in 
equation (3) and begin to follow an integral curve from a point 
on the positive X-axis. The radius vector must rotate in a 
counterclockwise direction until the F-axis is reached. To 
follow the curve further the sign of the radical must be changed 
at this point and the radius vector turned clockwise towards 
the X-axis. Each time the curve traverses the first quadrant 
it must cross the line A once and the line C once. In crossing 
the line C with one sign for the radical the slope of the curve 
will change sign by passing through zero, while with the 
opposite sign for the radical the slope of the curve will not 
change sign in crossing C. Similarly in crossing the line A 
with one sign for the radical the slope will change sign by 
passing through infinity, while with the opposite sign for the 
radical the slope will not change sign. Hence in starting from 
the X-axis, crossing to the F-axis, and returning to the X-axis 
the slope of an integral curve must change sign twice and only 
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twice; once by passing through zero (at a maximum or mini­
mum point) and once by passing through infinity (at an 
extreme right or extreme left point). 

Suppose now an integral curve T leaves the X-axis with 
positive slope. In order to reach the 7-axis the slope must 
become negative when r crosses A. Then in crossing C 
(either the first or second time) the slope will change to positive 
by passing through zero, and with a positive slope V can not 
return to the X-axis. 

Suppose r leaves the X-axis with negative slope and meets 
A first. In order to reach the Y-axis it must cross A the first 
time without changing to positive slope. After having crossed 
C twice the curve will return towards A with positive slope 
and can not again meet A because at the second point of inter­
section the slope of r would have to be infinite. Hence r 
can not return to the X-axis. 

Suppose r leaves the X-axis with negative slope and meets 
C first, (a) If the slope does not change sign then T} after 
crossing A twice, will return towards C with positive slope and 
can not meet C again because at a second point of intersection 
the slope would have to be zero, (b) If the slope changes to 
positive at the first intersection with C then the curve could 
not cross A twice since the slope would have to be infinite 
at one of the points of intersection. Hence V can not return 
to the X-axis. 

The preceding argument establishes the theorem as given 
by Picard. No mention has been made of the case in which 
the discriminant locus has a cusp at the origin. If the coeffi­
cients in equation (1) are limited to terms of the first degree, a 
cusp at the origin means that A is a perfect square and the 
equation can be broken up into linear factors. In this case 
the spiral is a possible form for integral curves, but this 
conclusion does not follow when the higher degree terms are 
present unless the cusp degenerates into two coincident 
branches. 

SHEFFIELD SCIENTIFIC SCHOOL, 
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