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gramme, and in particular the grouping together of all forms, 
which, like the resultant, are reducible to zero by the aid of given 
equations, under the class name of an algebraic modulus. In his 
Festschrift and the later expository papers of his pupils are 
proposed methods for testing any given system for its character, 
whether general, or special of the first sort (loci with a curve in 
common), or of the second or higher sort (loci with a surface, 
etc., in common). The expansion of this body of doctrine or 
abstract theory into a concrete geometry with fulness of examples 
remains a task, not all deductive but largely creative, for com­
ing decades or generations. 

Not the possession of éliminants actually calculated by 
Bézout's deservedly famous scheme is needful for the geo­
meter, but the knowledge of the conditions under which 
such an éliminant will exist, and what conditions will modify 
it. So with regard to the more far-reaching scheme of 
Kronecker ; it is ultimately, perhaps, not the full elaboration 
of particular examples as such, that we wish to have, but a 
precise knowledge of how the relative operations could be 
executed in finite time, and a precise formulation of conditions 
that would modify or influence the result of those operations. 
Which is of greater value, the logic or the concrete object to 
which it is applied ? Let everyone decide when both are in his 
possession ! 

ON THE REPRESENTATION OF NUMBERS BY 
MODULAR FORMS. 

BY PROFESSOB L. E. DICKSON. 

(Read before the Chicago Section of the American Mathematical Society, 
January 2, 1909.) 

1. F O R any field F in which there is an irreducible equation 
ƒ (ƒ>) = 0 of degree m, the norm of 

^o + xiP + X2P2 + ' * • + x
m-iPm~l 

is a form of degree m in m variables which vanishes for no set 
of values x. in the field F, other than the set in which every 
xi = 0. For a finite field it seems to be true that every form 
of degree m in m + 1 variables vanishes for values, not all 
zero, in the field. For m = 2 and m = 3 this theorem is 
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established in §§ 2, 3. The corresponding theorem does not 
hold in general for infinite fields. But A. Meyer * has shown 
that any indefinite quadratic form in five variables vanishes for 
integral values, not all zero, of the variables. 

Modular forms which represent only squares have been 
investigated f at length by the writer ; those which represent 
cubes exclusively are considered in §§ 4-12. 

2. Any ternary quadratic form in the GF\_pn~\, p > 2, can 
be transformed into q = ax2 + by2 + cz2. The number of sets 
of solutions of q = 0 in the field has been determined ; J in 
particular, this number exceeds unity. The latter fact may be 
proved very simply as follows. Since the proposition is evi­
dent when a = 0, we may take a == — 1, c =(= 0. Let z == ty. 
Then the question is whether or not (b + ctf)y2 — x2 vanishes 
in the field for x and y not both zero. If not, 6 + ct2 would 
be a not-square for every t But there are only \{pn — 1) not-
squares and %(pn + 1) squares t2, including zero. Hence not 
every one of the ^(pn + 1) values of b + ct2 is a not-square. 

3. Let Q be a quaternary cubic form with coefficients in the 
GF[pn], p > 3, which vanishes for no set of values in the field 
for as, y, z, w, except the set x = 0, • • -, w = 0. The coefficient 
of xB is not zero and may be taken to be unity. By adding to x 
a linear function of y, z, w, we may delete the terms x2y, x2z, x2w. 
The coefficient of x may be transformed into dy2 + \z2 + fiw2. 
Then Q becomes 

Qx = x3 + x(dy2 + Xz2 + fiw2) + gyz -f Ay2z + By2w + Cyz2 

+ Dyw2 + Eyzw + Fz3 + Gz2w + Hzw2w + RB. 

Let w = tz. Then Qx becomes a ternary cubic form which may 
be identified with that on page 161 of volume 14 of the B U L ­
LETIN, by setting a = 1, b = c = ƒ = 0, 

e=\ + fit2, h = A + Bt, k = C+ Et + Dt2, 

l=F+Gt + Ht2 + Rt\ 

Hence the relations at the top of page 165 must hold for every 
t. From dh =|= 0, we conclude that d 4= 0, B = 0. Then from 
the coefficient of f in eh + 3 dl = 0,we have R = 0. Hence QX 

vanishes for x = y = z = 0, w = 1, contrary to hypothesis. 

* Bachmann, Zahlentheorie, IV, p . 266, p . 553. 
t Transactions Amer. Math. Society, vol. 10 (1909), pp. 109-122. 
% The writer's Linear Groups, pp. 47, 48. 
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4. In investigating forms which represent exclusively cubes * 
in the GF[pn*] > w e shall assume that pn is of the form 3k + 1. 
For if pn — 1 were prime to 3, every element =|= 0 of the field 
would equal a cube in the field, and the question would be 
without content. 

Let axd + • • • represent cubes exclusively. In view of the 
values x = 1, y = 0, • • •, a must be a cube. Hence we may 
assume that the coefficient of xd is unity. Further d must be 
a multiple of 3. For, if d is prime to 3, the form represents 
the not-cube vd when x equals a not-cube v, y = 0, • •. We may 
therefore restrict our attention to forms xBl + • • • in the GF\_pn~\> 
pn = M+ 1. 

5. THEOREM. NO cubic form represents cubes exclusively. 
It suffices to prove the theorem for irreducible binary cubic 

forms C in the GF[pn]9 pn = 3k + 1. Then C(x, 1) = 0 has 
the roots p, ppn, pp2n in the GF[pSn], so that 

C = (as — py)\ t=l+pn +p2n. 

If C represent only cubes, C(pn~1)/S = 1. Hence the power 
%(pBn — 1) of x — py equals unity, so that x —- py is a cube in 
the 6ri^[jp3n] for every x and y, not both zero, in the GF[pn~\. 
Any non-vanishing element fi of the latter is a cube in the 
GF[pBn]. Hence 

Ka - rt/(6 - P) (a 4= 6) 
furnishes^>n(jön — l)2 distinct cubes in the GF\_pBn~\, a number 
exceeding the total number ^(pBn — 1) of the cubes. 

6. In the GF[pn~\, pn = 3k + 1, let S(x, y) be a sextic 
representing only cubes. Since 8 is the product of S(xy~1, 1) 
by y6, it suffices to require that JS(x, 1) shall represent only 
cubes. 

First, let p = 2, so that n is even, w = 2m. Set 

(1) S^^ap* K = l ) . 

Now $(4m~1)/3 = 1 since S shall represent only cubes in the 
m—1 

ÉrJ?[4m]. The exponent equals ]T 4 i . Hence, for every x in 
,7=0 

the field, 

* A non-vanishing element equal to the cube of an element of the field. 
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m—l / 6 \ 

The powers of x may be reduced by x*m= x. Hence, for 
l < e < 4 " - l , 
(2) " 2 a , „ « • • • aim-] = 0, 

the sum extending over all * integers 0 < i < 6 for which 
(3) E=it+tix + 4H2 + • • • + 4T-1 im_x == e (mod 4 * - l ) . 
I t is found to be advantageous to consider the higher values of e. 

For e == 4m — 1, we have I? =2e (whence each i = 6) or 2£=e. 
But 
(4) 4 m - l = 3 + 3 - 4 + 3-42 + . . . + 3-4"1-1. 

Hence E — e gives i0 == 3 (mod 4), whence iQ = 3, ix= 3 ; etc. 
Since a6 = 1, (2) becomes 

(5) 1 + a^m-l)/* = 0. 

For6 = 4 m - 2 , £ , = 2(4m~-l)-~l g i v e s i 0 = 5 , i. = 6 ( j > l ) . 
For E — ey either i0 = 2, f = 3(j > 1), or i0 = 6. In the latter 
case, \{E — e) gives 

1 + i, - 3 + 4(* , - 3) + 4 2 ( i 3 - 3) + • • • + 4 - ^ - 3 ) = 0 . 

Thus ^ = 2 (mod 4). For \ = 2, each i = 3 ( y > 2 ) . For 

l + ; 2 - 3 + 4 ( ^ - 3 ) + . . . + 4 - ^ M _ 1 - 3 ) = 0. 

Either i2 = 2, i. = 3( j " > 3), or i2 = G and we proceed as before. 

Thus 
a5 + a2al1+ a4

2a?/ + afa^ + . . . a4V«J» = 0 
(6) [or=*(4"-40]. 

Similarly, for f e = 4m — J, « = 3, 4, 6, 7, 8, we get 

(7) a, + a^ + a5(aial* + afaj» + • . . + afXm) = °> 

(8) a3 + a0a£ + a 4 ( a ^ - f a
4

2
2a^ + . . . ) = 0, 

+ a*a? + a^afa^ + afa^ + • • • ) = 0, 

* Except the set in which each i = 0, when e = 4m — 1. 
t The result for e = 4m—5 is evidently the fourth power of (6). 
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% + ^ 5 + «i(«2a32 + ' ' 0 
(10) 

+ aba\al* + a\(afac<* -\ ) = 0, 

(11) a3a
4 + aQ{a\a^ + •••) + a4a^ + a 4 a ^ « a j 8 + .. . )= 0. 

For m = 1 the last three conditions do not occur. 
First, let a5 — 0. JReplacing x by x + a^y, we have a5 = 0, 

a4 = 0. By (5), as is a cube in the field. By multiplying y 
by a~y% we have a8 = 1. Then ax = 0 by (7). By (6), 

so that a2 = 0 if m == 1. For m > 1, (9) and (10) give a2 = 0, 
a0 = 0, so that the sextic vanishes for x = 0. Hence m = 1, 
and 
(12) £ = cc6 + a^y8 + ƒ = |>3 + ay*] [x3 + (a- + % 3 ] , 

where a2 == a- + 1 (mod 2) defines the GF[4]. 
Next, for a5 4= 0, we multiply ?/ and make a 5 = 1. We 

multiply (6) by aB and add the fourth power of (6). We obtain 

1 + a2 + a3 = a2ag1+1 = a2, 

by (5). Hence a3 = 1, so that (6) becomes 

(6') 1 + a2 + a4 + < + • • • + < _ 1 = 0. 

In view of the latter, (7) and (8) give 

(7') a t = a4 + a 2 + l , aQ = 1 + a4(a2 + 1). 

If m = 1, a2 = 1 by (6'), so that * 

S = x6 + œ52/ + a4cc
4;*/2 + cc37/3 + cry4 + a4œ?/5 + y6. 

If a\ + «4 = 1, we have (13). If a4 = 0, we interchange x 
with y and are led to the earlier case a5 = 0. If a4 = 1, we 
replace x by 93 + <n/, where c2 + cr + 1 = 0 and obtain a sextic 
S with a4 = 0. 

If m > 1, we apply (6') to (9) and obtain 

ax + 1 + a2(a2 + 1) + a4 + a4 + a2 + 1 = 0 . 

Eliminating ax and a0 by (7'), we get 

(9') a\ + a2 = a4 + «J. 

* In the simple case m = 1, we may also proceed directly with (1), which 
must reduce to unity (the only cube) for every x. 
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Condition (10) likewise leads to (9'). But (11) gives 

(11') a2 + a2a4 + a4 + a\ + a2a4 = 0. 

By (9') and (11'), we get 

^2 = a4 + al-
B y (7')> ax = a\ + 1, a0 = a3 + a\ + a4 + 1. But aB = a5 = 1. 
Hence 

(13) S - J V + ay + fo + W -
THEOREM. In the G F [2 n ] , n even, every binary sextic which 

represents only cubes is formally a perfect cube, except for the case 
n= 2, when there is an additional type (12), the product of two 
irreducible cubic forms. 

7. For pn = Zk+ 1, p > 2, we may remove the term x6y 
from the binary sextic 8. Hence it suffices to investigate 

(14) S = zQ + bz* + cz3 + dz2 + ez+f (ƒ = cube). 

For pn = 7, the cubes are ± 1. We require that S2 = 1 for 
every z making z6 == 1 (mod 7). First, let ƒ = — 1. Then 

(fe4 + czs + efe2 + es)2 = 1 
requires that 

be + cd =• 0, d2 + 2ce = 0 , de = 0, 62 + e2 = 0, 

6C = o, c2 + 26rf = 1. 

Hence 8 = z6 =b s3 —- 1. Multiplying » by d= 1, we get 

(15) z6 + zB - 1 = (z2 - s + 3)(s2 - 2^ - 2)(s2 + 3s - 1). 

Next, let ƒ = 1. Then (bz4 + . . . + 2)2 = 1 gives 

be + cd == d2 + 2ce + 46 = 2c + de == è2 + e2 + 4d 

= bc + 2e = c2 + 26d + 3 s= 0. 

I f e == 0, then c ES 0, d ES — 2è2, è3 == — 1. Multiplying z by 
36_1 , we have 6 = 3. Hence 

(16) S=(z2+1)\ 

If e 4= 0 we multiply y by e and have e == 1. Then the first 
three conditions give 

b == 2c2, c2 == c, d == 5c. 
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The fifth gives c3 = — 1, in contradiction with c2 = c. 
Any sextic ax6 + • • • which represents only cubes, modulo 7, 

cannot equal — 1 for every x and y, not both zero, and hence 
must take the value + 1. Hence it can be transformed into 
x6 + • • •. 

THEOREM. Every binary sextic which represents only cubes, 
modulo 7, can be transformed into 

(x2 + y2f or x6 + xByB -— y6. 

8. Let X = s6 + bz* + dz2+f, fi = czB + ez. Then X + /* 
and X — fi must be cubes for every z. For pn = 13, (X d= ^)4 == 1, 
whence 

(17) X = 0, /*4 = 1 ; /u = 0, X4 = 1 ; X2 + V?= 0,X4== /*4= 3 
(mod 13). 

Hence for every z, 

(18) /x(/x4 - 1) ( /x4- 3) == 0 (mod 13). 

I f 6 == 0, fi = C23, and (18) gives 

c ( c 4 - 1) (c4 - 3) = 0 (mod. 13). 

If c4 == 1, then /A4 == 1 for z =f= 0, so that, by (17), X = 0 for 
every z 4= 0, contrary to the degree of X. If c4 = 3, then 
fi4 = 3, X2 + /A2 = 0 for 3 4= 0 ; but the resulting conditions 
give b == d == 0, c2 = db 3, contrary to c4 == 3. 

For the troublesome case c = e = 0, we set 

X = S 6 + (fe2, fJL = bz*+f, 

so that # = X + fi is a cube. Replacing z by 5z, we see that 
— X + fi is a cube for every s. Hence one of the three cases 
(17) must hold. Now /x(//,4 — 3) involves only powers of z4 and 
hence, for z 4= 0, equals a function of degree 8. Thus at least 
four values 4= 0 of » must give rise to the first case (17). 
Hence X = 0 has four roots z 4= 0, so that d3 = — 1. Multi­
plying y by d~l, we may set d = — 1. Thus X = z2{f — 1). 
When X 4= 0, we have z4 = 3 or 9, viz., 

s 4 = 3 , X=2s2 , X 2 = - l , X 4 = l ; 

s4 = 9, X=8s 2 , X 2 = 4 , X4==3, 

thus corresponding to the respective cases f 17). Thus if 24 = 3, 
then M = 0, whence 36 = —ƒ. For z* == 9, then /A2 + 4 = 0, 
f = - 1. Hence 8 = (»a =h 2)3. 
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Finally, let e =j= 0. Since every integer is a fifth power 
modulo 13, we may multiply y and make e = 1. Then (18) 
holds for jii = c23+ z. For z 4= 0, 
^8 _ 4^4 + 3 ^ (8c7 _ 3 c3 + 8 c ) 1̂0 + (2c6 + 2C2+ 1> 8 

+ (4c5 - 3c>6 + (5c4 — 4>4 + 4cV + c8 - 4c4 + 2c2 + 3. 

In its product by cz2 + 1, the coefficients of z* and z6 are 

9c4 — 4, 9c5 - 7c, 

which do not both vanish modulo 13. 
Hence the sextics which represent only cubes modulo 13 

have been reduced to the product of (x2 4= 2y2)3 by a cube Z3. 
But I (x2 zb 2y2) can be transformed into x2 -f 2y2. 

THEOREM. Every sextiö which represents only cubes modulo 
13 is a perfect cube which may be transformed into (x2 + 2j/2)3. 

9. For the next two values 19 and 25 of pn = 3k + 1,1 find 
that any binary sextic 8 which represents only cubes equals the 
cube of a quadratic form. For pn = 52, this result follows 
readily by requiring that 82 shall equal its fifth power ; by the 
coefficients of z21, z16, z11, z\ we get £ = (z2 + 26)3. 

For y = l l 2 , S4 must equal its 11th power. By the coeffi­
cients of zlu, zm, zS9, z7S, we get S =* (z2 + 46)3. 

I t seems probable that, for pn = 3k + 1 > 7, every binary 
sextic which represents only cubes is formally a perîect cube. 
Although certain general considerations point to the validity 
of this conjecture, I have not effected a complete proof. 

10. A sextic on three or more variables cannot represent 
exclusively cubes in a field of order pn = 3h + 1 for which the 
binary sextics representing only cubes are formally perfect 
cubes. I t suffices to prove the theorem for ternary sextics T. 
For * p > 2, we may delete the terms x5y, x% y5z. Then the 
terms free of z are (x2 -— vy2)3, where v is a not-square. When 
z is multiplied by a suitable constant, the terms free of y are 
(x2 — vz2)B. Then the terms free of x are — v\y2 + €32)3, where 
€3 = 1. Since e equals the square of e2, and y2 + ez2 is irre­
ducible, — 1 must be a not-square. Hence we may set v = — 1. 
Hence 

T= x6 + y6 + z6 

(19) 
' + 3 ( » V + » y + xh2 + x2zA + eyAz2 + €2y2z4) + xyz$y 

* By a different argument, I have proved that there is no tenary sextic i n 
the GF\22m] which represents only cubes. 
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<j> = Ax3 + By* + Cz3 + Dx2y + Ex2z + Fxy2 

+ Gxz2 + Ky2z + Lyz2 + Mxyz. 

Set x = Xy. Then, for X arbitrary in the field, 

ƒ = (X2 + 1 )Y + rtfz + sy4z2 + (GX2 + LX)y3z3 + tyh4 + z« 

must be formally a perfect cube in x} y. Here 

r = A\4 + DX3+FX2 + BX, 

s = 3X4 + EX3 + MX2 + KX + 3e, 

« = 3X2 + CX + 3e2. 

Hence ƒ = [(X2 + l)y2 + coz2]3, where œ3 = 1. Thus 

r = 0, s = 3Û)(X2 + l)2, « = 3Û)2(X2 + 1), GX2 + ZX = 0 

for every X in the given field of order > 4. Hence 

^ = £ = C = D = . E = ^ = <9 = i T = Z = 0, J f = 6 , 
« = € = i , r = (x2 + ƒ + s2)3. 

By § 2, T vanishes for x, y, z, not all zero, in the field. 
11. I t remains to investigate the ternary sextics T which 

represent only cubes in the GF\1~\. The terms free of x in T 
will be denoted by Byz, those free of y by Bxz, etc. By § 7, 
each B is a perfect cube or a product TT of three quadratic 
forms. Suppose that one of the JS?S, say Bxz, is of the type TT. 
Beplacing x by x + ry + sz, we may delete the terms x5y and 
œ5s ; then Bxz is still of the type TT, and Bxy is of its original 
type. Hence we may set 

Bxz = zG + œ V — z6. 

Let T become T' when y is replaced by y + /02. The coefficient 
c of £6 in B'xz is the value of B for t/ = p, z = 1, and hence 
is a sextic in p with a non-vanishing coefficient for p6 ; thus 
c =(= — 1 for some value of p. Since B' is not of type 7r, it is 
a perfect cube. Also, B'xy = i ?^ . 

Thus one of the JB's may be assumed to be a perfect cube. 
With J5 a cube, the same argument shows that we may make 
also Bxz a perfect cube, and that we may set 

Employing the abbreviation <£, given by (20), we have 
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5 

T=x6+y6+z6+3x4y2+3x4z2+3x2y4+ 3xhA+ £ « y " V + a^a£. 

Set y = Xz. Then Î7 becomes 

£ == x6 + r2œV + rgt?£ + • + r6s
6, 

r2=:3\2+A\-\-3, rz=D\2+E\ r^3\4+F\*+M\2+G\+3, 

r 5 = JBX4 + „5TX3 + 2A2 + f7X, r6 = X6 + cxX
5 -f . . . + c5X + 1. 

Now r = x6 zfc cc3»3 — z6, viz., is of type TT, if and only if 

(21) r a s r 4 s r 5 s 0 , rj s 1, r6 s - 1 (mod 7) ; 

while T is a perfect cube if and only if 
(22) rB == r5 == 0, r4 == 5r2, r6 == 6r3 (mod 7). 

Since r2rs ~ 0 for every X, D = i? = 0. Hence (21) is ex­
cluded, so that (22) must hold for every X. We may therefore 
remove the term y5z from T and proceed as in § 10. Or we 
may proceed with (22) and show that 

T=-(x2 + y2 + z2-2Ayzy. 
12. The theorem that there exists no sextic on three or more 

variables which represents only cubes in a field of order 
pn = 3k + 1 has now been established for pn < 31, pn = 2n

; and 
pn = l l 2 . I ts truth for all values of pn has been proved, sub­
ject to the validity of the conjectured theorem of § 9 on binary 
sextics. 

THE UNIVEKSITY OF CHICAGO, 
October, 1908. 

NOTE ON LÜROTITS TYPE OF PLANE QUARTIC 
CURVES. 

BY PROFESSOR H. S. WHITE AND MISS KATE G. MILLER. 

(Head before the American Mathematical Society, September 6, 1907.) 

O N E of the stock examples of the fallacy of constant count­
ing is the equation of a plane quartic, whose fourteen constants 
equal in number those apparent in the sum of five fourth powers 
of linear expressions 

T» I /y»4 1 /y» -X. O* I />» 
•"l I **/2 ' 3 * 4 T^«^5» 


